71 research outputs found

    FLT3 and IRAK4 Inhibitor Emavusertib in Combination with BH3-Mimetics in the Treatment of Acute Myeloid Leukemia.

    Get PDF
    Targeting the FLT3 receptor and the IL-1R associated kinase 4 as well as the anti-apoptotic proteins MCL1 and BCL2 may be a promising novel approach in the treatment of acute myeloid leukemia (AML). The FLT3 and IRAK4 inhibitor emavusertib (CA4948), the MCL1 inhibitor S63845, the BCL2 inhibitor venetoclax, and the HSP90 inhibitor PU-H71 were assessed as single agents and in combination for their ability to induce apoptosis and cell death in leukemic cells in vitro. AML cells represented all major morphologic and molecular subtypes, including FLT3-ITD and NPM1 mutant AML cell lines and a variety of patient-derived AML cells. Emavusertib in combination with MCL1 inhibitor S63845 or BCL2 inhibitor venetoclax induced cell cycle arrest and apoptosis in MOLM-13 cells. In primary AML cells, the response to emavusertib was associated with the presence of the FLT3 gene mutation with an allelic ratio >0.5 and the presence of NPM1 gene mutations. S63845 was effective in all tested AML cell lines and primary AML samples. Blast cell percentage was positively associated with the response to CA4948, S63845, and venetoclax, with elevated susceptibility of primary AML with blast cell fraction >80%. Biomarkers of the response to venetoclax included the blast cell percentage and bone marrow infiltration rate, as well as the expression levels of CD11b, CD64, and CD117. Elevated susceptibility to CA4948 combination treatments with S63845 or PU-H71 was associated with FLT3-mutated AML and CD34 < 30%. The combination of CA4948 and BH3-mimetics may be effective in the treatment in FLT3-mutated AML with differential target specificity for MCL1 and BCL2 inhibitors. Moreover, the combination of CA4948 and PU-H71 may be a candidate combination treatment in FLT3-mutated AML

    Rationale for Combining the BCL2 Inhibitor Venetoclax with the PI3K Inhibitor Bimiralisib in the Treatment of IDH2- and FLT3-Mutated Acute Myeloid Leukemia.

    Get PDF
    In October 2020, the FDA granted regular approval to venetoclax (ABT-199) in combination with hypomethylating agents for newly-diagnosed acute myeloid leukemia (AML) in adults 75 years or older, or in patients with comorbidities precluding intensive chemotherapy. The treatment response to venetoclax combination treatment, however, may be short-lived, and leukemia relapse is the major cause of treatment failure. Multiple studies have confirmed the upregulation of the anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family and the activation of intracellular signaling pathways associated with resistance to venetoclax. To improve treatment outcome, compounds targeting anti-apoptotic proteins and signaling pathways have been evaluated in combination with venetoclax. In this study, the BCL-XL inhibitor A1331852, MCL1-inhibitor S63845, dual PI3K-mTOR inhibitor bimiralisib (PQR309), BMI-1 inhibitor unesbulin (PTC596), MEK-inhibitor trametinib (GSK1120212), and STAT3 inhibitor C-188-9 were assessed as single agents and in combination with venetoclax, for their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of bone marrow stroma. Enhanced cytotoxic effects were present in all combination treatments with venetoclax in AML cell lines and AML patient samples. Elevated in vitro efficacies were observed for the combination treatment of venetoclax with A1331852, S63845 and bimiralisib, with differing response markers for each combination. For the venetoclax and bimiralisib combination treatment, responders were enriched for IDH2 and FLT3 mutations, whereas non-responders were associated with PTPN11 mutations. The combination of PI3K/mTOR dual pathway inhibition with bimiralisib and BCL2 inhibition with venetoclax has emerged as a candidate treatment in IDH2- and FLT3-mutated AML

    Clinical Impact of Single Nucleotide Polymorphism in CD-19 on Treatment Outcome in FMC63-CAR-T Cell Therapy.

    Get PDF
    Chimeric antigen receptor (CAR)-T cell therapy is effective in patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL) with response rates of 63-84% and complete response observed in 43-54%. Common germline variants of the target antigen CD19 may elicit different responses to CAR-T cell therapy. The CD19 gene single nucleotide polymorphism rs2904880 encoding leucine or valine at amino acid position 174 of the CD19 antigen was prevalent in 51% of the studied DLBCL patients. In a retrospective comparative analysis of clinical outcome, there were significant differences in CD19 L174 versus V174 carriers: the median time of progression-free survival was 22 vs. 6 months (p = 0.06), overall survival was 37 vs. 8 months (p = 0.11), complete response rates were 51% vs. 30% (p = 0.05), and refractory disease rates were 14% vs. 32% (p = 0.04). The single nucleotide polymorphism in CD19 was shown to influence the treatment outcome in FMC63-anti-CD19-CAR-T cell therapy, and the CD19 minor allele L174 predicted a favorable treatment outcome

    sBCMA Plasma Level Dynamics and Anti-BCMA CAR-T-Cell Treatment in Relapsed Multiple Myeloma.

    Get PDF
    BACKGROUND Novel chimeric antigen receptor T-cells (CAR-T) target the B-cell maturation antigen (BCMA) expressed on multiple myeloma cells. Assays monitoring CAR-T cell expansion and treatment response are being implemented in clinical routine. METHODS Plasma levels of soluble BCMA (sBCMA) and anti-BCMA CAR-T cell copy numbers were monitored in the blood, following CAR-T cell infusion in patients with relapsed multiple myeloma. sBCMA peptide concentration was determined in the plasma, applying a human BCMA/TNFRS17 ELISA. ddPCR was performed using probes targeting the intracellular signaling domains 4-1BB und CD3zeta of the anti-BCMA CAR-T construct. RESULTS We report responses in the first five patients who received anti-BCMA CAR- T cell therapy at our center. Four patients achieved a complete remission (CR) in the bone marrow one month after CAR-T infusion, with three patients achieving stringent CR, determined by flow cytometry techniques. Anti-BCMA CAR-T cells were detectable in the peripheral blood for up to 300 days, with copy numbers peaking 7 to 14 days post-infusion. sBCMA plasma levels started declining one to ten days post infusion, reaching minimal levels 30 to 60 days post infusion, before rebounding to normal levels. CONCLUSIONS Our data confirm a favorable response to treatment in four of the first five patients receiving anti-BCMA CAR-T at our hospital. Anti-BCMA CAR-T cell expansion seems to peak in the peripheral blood in a similar pattern compared to the CAR-T cell products already approved for lymphoma treatment. sBCMA plasma level may be a valid biomarker in assessing response to BCMA-targeting therapies in myeloma patients

    Glofitamab Treatment in Relapsed or Refractory DLBCL after CAR T-Cell Therapy.

    Get PDF
    Chimeric antigen receptor T-cells (CAR T) treatment has become a standard option for patients with diffuse large B-cell lymphomas (DLBCL), which are refractory or relapse after two prior lines of therapy. However, little evidence exists for treatment recommendations in patients who relapse after CAR T-cell treatment and the outcome for such patients is poor. In this study, we evaluated the safety and efficacy of a monotherapy with the bispecific CD20xCD3 antibody glofitamab in patients who progressed after CAR T treatment. We report nine consecutive patients with progressive DLBCL after preceding CAR T-cell therapy. The patients received a maximum of 12 cycles of glofitamab after a single obinutuzumab pre-treatment at an academic institution. CRS was observed in two patients (grade 2 in both patients). We observed an overall response rate of 67%, with four patients achieving a complete response and a partial remission in two patients. Interestingly, we identified increased persistence of circulating CAR T-cells in peripheral blood in three of the five patients with measurable CAR T-cells. Our data suggest that glofitamab treatment is well tolerated and effective in patients with DLBCL relapsing after CAR T-cell therapy and can enhance residual CAR T-cell activity

    Emberger Syndrome – A Family History Over 3 Generations

    Get PDF
    # Introduction Haploinsufficiency of _GATA2_ leads to impaired genesis and function of hematopoietic stem and progenitor cells, resulting in impairment of all subsequent blood cell lineages. Germline mutations in _GATA2_ are transmitted by autosomal-dominant inheritance. Leading clinical symptoms of _GATA2_ deficiency syndromes are immunodeficiency, infections (mainly nontuberculous mycobacteria and human papillomavirus), predisposition to myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), pulmonary alveolar proteinosis (PAP) and primary lymphedema. _GATA2_ mutations underlie not only Emberger syndrome (primary lymphedema and MDS), but also other syndromes like monocytopenia and mycobacterial infections syndrome (MonoMAC), dendritic cell/monocytopenia/natural killer (NK)-cell/B-cell lymphoid deficiency (DCML) and familial MDS/AML syndrome. We report the history of a Swiss family with Emberger syndrome extending over three generations. In addition, a review of the literature on _GATA2_ deficiencies is provided. # Methods Based on a general practitioner's observation of father and son sharing similar declined blood values and lymphedema, we examined the whole family for the presence of _GATA2_ mutation and a possible genotype-phenotype correlation. Publications on _GATA2_ deficiencies were researched on the PubMed database. # Results Six family members were diagnosed with _GATA2_ mutation, demonstrating individually variable penetrance and diversity of leading symptoms. # Conclusion Careful investigation of personal and family history, as well as meticulous examination, led to suspicion of the rare diagnosis of familial Emberger syndrome. Early diagnosis is mandatory for appropriate disease management

    BeEAM Conditioning including High-Dose Bendamustine before Autologous Stem Cell Transplantation Is Safe and Effective in Patients with Waldenstrom's Macroglobulinemia.

    Get PDF
    High-dose chemotherapy (HDCT) with autologous stem cell transplantation (ASCT) is an option to consolidate remission in Waldenstrom's macroglobulinemia (WM), particularly in selected younger patients with chemosensitive disease. BEAM, consisting of BCNU, etoposide, cytarabine, and melphalan, is often used as a conditioning regimen. However, problems with BCNU, including pneumotoxicity, tolerance, and availability, necessitate the search for alternatives. In this pilot study, we investigated high-dose chemotherapy with BeEAM, in which BCNU is replaced with high-dose bendamustine as an alternative conditioning regimen in six subsequent patients with WM. Bendamustine treatment was well tolerated without unexpected toxicities. The overall response rate was 6/6 patients (2 very good partial responses (VGPR) and 4 PR). After a median follow-up of 72 months, two (33%) patients relapsed. Median progression-free and overall survivals were not reached, and no severe late-onset toxicities were observed so far. In this pilot study, BeEAM conditioning before ASCT seems feasible, safe, and effective in patients with WM

    Real-life experiences with CAR T-cell therapy with idecabtagene vicleucel (ide-cel) for triple-class exposed relapsed/refractory multiple myeloma patients.

    Get PDF
    BACKGROUND Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment landscape of relapsed/refractory multiple myeloma (RRMM), leading to unprecedented responses in this patient population. Idecabtagene vicleucel (ide-cel) has been recently approved for treatment of triple-class exposed RRMM. We report real-life experiences with the commercial use of ide-cel in RRMM patients. METHODS We performed a retrospective analysis of the first 16 triple-class exposed RRMM patients treated with ide-cel at a single academic center. We assessed toxicities, response to treatment, CAR T expansion and soluble BCMA (sBCMA) levels. RESULTS We identified 16 consecutive RRMM patients treated with ide-cel between 06-10/2022. Median age was 69 years, 6 (38%) patients had high-risk cytogenetics, 3 (19%) R-ISS stage III, and 5 (31%) extramedullary disease. Median number of previous treatment lines was 6 (3-12). Manufacturing success rate was 88% (6% required second lymphapheresis, 6% received an out-of-specification product). At 3 months, the overall response rate (ORR) was 69% (44% sCR, 6% CR, 19% VGPR). Cytokine release syndrome (CRS) occurred in 15 (94%) patients (88% G1, 6% G2), immune effector-cell associated neurotoxicity syndrome (ICANS) in 1 (6% G1), febrile neutropenia in 11 (69%), and infections in 5 (31%). Prolonged hematologic toxicity occurred in 4/16 (25%) patients. Other non-hematological toxicities were elevated hepatic enzymes (38%), colitis (6%, G3) and DIC (6%, G2). Responses were more frequent in patients with higher CAR T expansion (100% vs 38%), and lack of decrease or plateau of sBCMA levels was typically observed in non-responders. CONCLUSIONS We report one of the first cohorts of RRMM treated with commercial ide-cel. The ORR was 69% and safety profile was manageable, but prolonged hematologic toxicity still represents a major challenge. Responses correlated with in vivo CAR T cell expansion, underlining the need of further research to optimize CAR T expansion

    Efficacy and Safety of High-Dose Chemotherapy with Treosulfan and Melphalan in Multiple Myeloma.

    Get PDF
    (1) Background: Upfront treatment consolidation with high-dose chemotherapy (HDCT) and autologous stem cell transplantation (ASCT) has relevantly contributed to achieving durable remissions following induction treatment in multiple myeloma (MM) patients. The optimization of HDCT regimens can, therefore, essentially contribute to improving the depth and duration of tumor remissions. To date, melphalan at 200 mg/m2 is the standard HDCT regimen for fit MM patients. In our previous work, we showed promising efficacy and safety results for treosulfan (14 g/m2) and melphalan (200 mg/m2) (TreoMel) in acute myeloid leukemia (AML) patients receiving ASCT. Based on these data, TreoMel became the standard of care for fit MM patients at our institution. (2) Methods: We identified 115 consecutive MM patients who underwent consolidation with TreoMel between 01/2020 and 08/2022 at the University Hospital of Bern. We analyzed the safety and efficacy data, as well as the treosulfan pharmacokinetics, correlating them with tumor responses. (3) Results: A complete response (CR) rate of 84% was achieved, which is comparable to the CR rate reported for the quadruplet combination. The median PFS was 30 months (95% CI: 20.4-not reached), and the 31-month OS rate was 83%. The median area under the curve (AUC) for treosulfan was 952.5 mg*h/L (range: 527.4-1781.4), and the median peak level was 332.3 mg/L (range: 168-554). The treosulfan pharmacokinetics showed no significant correlation with MM responses after HDCT and ASCT. However, female patients had a significantly higher AUC (p = 0.007) and peak value (p = 0.001), and the higher values were associated with longer hospitalizations. (4) Conclusions: Treatment consolidation with TreoMel HDCT demonstrated a promising efficacy and safety profile in our cohort of MM patients and deserves further investigation in prospective studies

    CAR T-Cell Persistence Correlates with Improved Outcome in Patients with B-Cell Lymphoma.

    Get PDF
    Chimeric antigen receptor (CAR) T-cell therapy has led to profound and durable tumor responses in a relevant subset of patients with relapsed/refractory (r/r) B-cell lymphomas. Still, some patients show insufficient benefit or relapse after CAR T-cell therapy. We performed a retrospective study to investigate the correlation between CAR T-cell persistence in the peripheral blood (PB) at 6 months, assessed by droplet digital PCR (ddPCR), with CAR T-cell treatment outcome. 92 patients with r/r B-cell lymphomas were treated with CD19-targeting CAR T-cell therapies at our institution between 01/2019-08/2022. Six months post-treatment, 15 (16%) patients had no detectable circulating CAR-T constructs by ddPCR. Patients with CAR T-cell persistence had a significantly higher CAR T-cell peak (5432 vs. 620 copies/ug cfDNA, p = 0.0096), as well as higher incidence of immune effector cell-associated neurotoxicity syndrome (37% vs. 7%, p = 0.0182). After a median follow-up of 8.5 months, 31 (34%) patients relapsed. Lymphoma relapses were less frequent among patients with CAR T-cell persistence (29% vs. 60%, p = 0.0336), and CAR T-cell persistence in the PB at 6 months was associated with longer progression-free survival (PFS) (HR 2.79, 95% CI: 1.09-7.11, p = 0.0319). Moreover, we observed a trend towards improved overall survival (OS) (HR 1.99, 95% CI: 0.68-5.82, p = 0.2092) for these patients. In our cohort of 92 B-cell lymphomas, CAR T-cell persistence at 6 months was associated with lower relapse rates and longer PFS. Moreover, our data confirm that 4-1BB-CAR T-cells have a longer persistence as compared to CD-28-based CAR T-cells
    • …
    corecore