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Abstract: In October 2020, the FDA granted regular approval to venetoclax (ABT-199) in combination
with hypomethylating agents for newly-diagnosed acute myeloid leukemia (AML) in adults 75 years
or older, or in patients with comorbidities precluding intensive chemotherapy. The treatment response
to venetoclax combination treatment, however, may be short-lived, and leukemia relapse is the major
cause of treatment failure. Multiple studies have confirmed the upregulation of the anti-apoptotic
proteins of the B-cell lymphoma 2 (BCL2) family and the activation of intracellular signaling pathways
associated with resistance to venetoclax. To improve treatment outcome, compounds targeting anti-
apoptotic proteins and signaling pathways have been evaluated in combination with venetoclax.
In this study, the BCL-XL inhibitor A1331852, MCL1-inhibitor S63845, dual PI3K-mTOR inhibitor
bimiralisib (PQR309), BMI-1 inhibitor unesbulin (PTC596), MEK-inhibitor trametinib (GSK1120212),
and STAT3 inhibitor C-188-9 were assessed as single agents and in combination with venetoclax, for
their ability to induce apoptosis and cell death in leukemic cells grown in the absence or presence of
bone marrow stroma. Enhanced cytotoxic effects were present in all combination treatments with
venetoclax in AML cell lines and AML patient samples. Elevated in vitro efficacies were observed
for the combination treatment of venetoclax with A1331852, 563845 and bimiralisib, with differing
response markers for each combination. For the venetoclax and bimiralisib combination treatment,
responders were enriched for IDH2 and FLT3 mutations, whereas non-responders were associated
with PTPN11 mutations. The combination of PI3K/mTOR dual pathway inhibition with bimiralisib
and BCL2 inhibition with venetoclax has emerged as a candidate treatment in IDH2- and FLT3-
mutated AML.

Keywords: acute myeloid leukemia (AML); B-cell lymphoma-2 (BCL2); venetoclax (ABT-199);
isocitrate dehydrogenase 2 (IDH2); bimiralisib (PQR309); mammalian target of rapamycin (mTOR);
phosphoinositide 3-kinase (PI3K); Fms-related receptor tyrosine kinase 3 (FLT3); protein tyrosine
phosphatase non-receptor type 11 (PTPN11)

1. Introduction

With a median age of 68 years at diagnosis, acute myeloid leukemia (AML) is pre-
dominantly a disease of the elderly. The majority of these patients are not eligible for
intensive chemotherapy with curative intent, and the standard of care has been treatment
with hypomethylating agents (HMA) [1,2]. The addition of the BCL2 inhibitor venetoclax
(ABT-199) to the HMA backbone leads to an increase in response and survival rates [3]. In
October 2020, the Food and Drug Administration granted regular approval to venetoclax
(VENCLEXTA®, AbbVie Inc., North Chicago, IL, USA and Genentech Inc., San Francisco,
CA, USA) in combination with HMA including azacitidine, decitabine, or with low-dose
cytarabine (LDAC) for newly-diagnosed AML in adults 75 years or older, or in patients
with comorbidities precluding intensive chemotherapy. The combination of venetoclax
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and the HMA azacitidine results in a remission rate of approximately 70% [3]. However,
a significant number of patients have refractory disease, and the majority of responding
patients will ultimately relapse.

High response rates and durable remissions to venetoclax treatment were found to be
associated with NPM1, DNMT3A, or IDH2 mutations, while resistance was associated with
mutations in FLT3, RAS, or TP53 genes [4-6]. In another study, responders were enriched
for TET2, IDH1, and IDH2 mutations, while non-responders were associated with FLT3 and
RAS mutations [7]. RUNX1 and SRSF2 mutations may also be associated with venetoclax
response [8,9]. Different mechanisms such as deletion or inactivation of TP53 but also
increased expression of MCL-1, another active pro-survival member of the BCL-2 family,
were reported to be related to venetoclax resistance [10].

Hematological cells of various origins, including AML, exhibit specific dependencies
on either BCL-2, BCL-XL, or MCL-1 for survival [11,12]. This dependency may be associ-
ated with selective sequestration of the pro-apoptotic proteins BIM, BAX, and BAK by the
specific anti-apoptotic BCL-2 protein. BH3-mimetics displace pro-apoptotic BH3-containing
proteins from their anti-apoptotic target. The BCL-2 inhibitor venetoclax induced BAX-
dependent apoptosis, while the MCI-1 inhibitor S63845 induced mainly BAK-dependent
apoptosis. 563845 displayed impressive potency at low nanomolar concentrations in pre-
clinical in vitro and in vivo models of hematological malignancies, including MM, AML,
CML, and c-MYC-driven Burkitt lymphoma [13]. 563845 has been proposed as a candi-
date treatment in AML in combination with the MEK inhibitor trametinib or the BMI1
inhibitor PTC596 in preclinical studies [14,15]. Clinical studies of combination treatments
with MCL-1 inhibitors and venetoclax have been initiated in hematological malignancies
(NCT03672695, NCT04702425). Venetoclax in combination with trametinib has been pro-
posed as targeted therapy in RAS-mutated AML [16], combinations of STAT5- and MCL-1
inhibitors in FLT3- or TET2-mutated AML [17]. In vivo administration of cobimetinib
in combination with venetoclax demonstrated anti-leukemia efficacy in acute myeloid
leukemia xenograft mouse models [18], and a phase 1/2 study combining the MEK in-
hibitor cobimetinib with venetoclax in AML has been initiated (NCT02670044). In lymphatic
leukemias combinations of venetoclax and BCL-XL inhibitor A1331825 were proposed for
treatment in B-lineage acute lymphatic leukemia (B-ALL) [19], while venetoclax and PI3K
inhibitors are employed in the treatment of chronic lymphatic leukemia (CLL) [20,21].

In myeloid cells, FLT3 is a growth factor receptor signaling via PI3K-AKT-mTOR, and
FLT3 gene mutations lead to abnormal activation of the pathway in AML [22,23]. About
50-80% of AML patients display constitutive PI3K/Akt/mTOR activation, and this was
associated with reduced survival [24]. Pan PI3K inhibitors are expected to reduce the
risk of drug resistance that might occur in case of treatment with compounds targeting
a single PI3K isoform and, together with mTOR inhibition, could prevent feedback loop
of AKT activation following mTOR inhibition. Co-targeting BCL-2 and PI3K may induce
apoptosis in AML cells [25]. PQR309 (bimiralisib) is a novel orally bioavailable selective
dual PI3K/mTOR inhibitor [26]. Bimiralisib alone or in combination with venetoclax has
been evaluated in preclinical lymphoma setting [27] and in a phase II study in R/R lym-
phoma [28]. Unesbulin (PTC596) is a second-generation BMI-1 inhibitor that downregulates
MCL-1 expression in AML cells and may influence expression of MCL1 inducers including
MEK, ERK, AKT, STAT3, and STAT5 [29]. The combination of PTC596 and S63845 or
trametinib may be an effective treatment in CD34+ adverse risk AML [15]. Chemotherapies
may be effective at eradicating leukemic cells in the peripheral blood, but not in the bone
marrow niche, where leukemic cells are sheltered [30]. Valuable information may be gained
in the preclinical evaluation of novel therapies when AML cells are grown in the presence
of bone marrow stroma [17].

In the current study, the BCL-XL inhibitor A1331852, the MCL1-inhibitor S63845, the
PI3K inhibitor bimiralisib (PQR309), the BMI-1 inhibitor unesbulin (PTC596), the MEK-
inhibitor trametinib (GSK1120212), and the STAT3 inhibitor C-188-9 were assessed as single
agents and in combination with venetoclax, for their ability to induce apoptosis and cell
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death in leukemic cells grown in the absence or presence of bone marrow stroma. Several
combinations were found to be effective in vitro: venetoclax and S63845, venetoclax and
A1331825, and venetoclax and PQR308.

2. Results
2.1. Variable Susceptibility of AML Cell Lines to Venetoclax and Various Targeted Therapies

To determine the sensitivity of AML cells to different targeted compounds, AML cells
were subjected to in vitro cytotoxicity assays. Seven AML cell lines and one BCL2-driven
DLBCL cell line were treated for 20 h in dose escalation experiments before cell viability
assessment. Our panel of AML cell lines covered the majority of the morphologic and
molecular subtypes, particularly including FLT3-ITD and FLT3 wild type, NPM1 mutant
and wild type, as well as TP53 wild type, mutant, hemizygous, and null cells (Table 1).

Table 1. Characteristics of leukemia and lymphoma cell lines.

ID Disease Status FLT3 TP53 Gene Variants Karyotype
NRAS Q61L .
HL-60 AML (M2) de novo wt null CDKN2A R80X hypotetraploid
KMT2A-AFDN
ML-2 AML (M4) de novo wt wt KRAS A146T t(6;11)
MOLM-13 AML (M5) relapse ITD wt KMT2A-MLLT3 t(9;11)
MOLM-16 AML (MO0) relapse wt V173M/C238S MLL V1368L hypotetraploid
DNMT3A R882C
OCI-AML3 AML (M4) de novo wt wt NRAS Q61L +1, +5, +8
NPM1 L287fs
PL-21 AML (M3) de novo ITD/P336L wt/P36fs KRAS Al146V hypertetraploid
SKM-1 AML (M5) fract t R248Q/R248Q ASXL1 Y591 Ter del(9q12)
refractory W KRAS K117N e
BCL2-IgH, .
OCI-Ly1 DLBCL relapse wt R158H/C176G PTEN del t(14;18)
AML, acute myeloid leukemia (FAB classification); DLBCL, diffuse large B-cell lymphoma; wild type (wt); internal
tandem duplication (ITD).
We observed that the BCL2-driven and TP53 double mutant lymphoma cell line OCI-
Lyl was highly susceptible to venetoclax with IC50 of 60 nM. The AML cell lines ML-2
and MOLM-13 were susceptible to venetoclax with IC50 of 100 and 200 nM, while OCI-
AML3, SKM-1, and HL-60 had IC50 of 600 nM, 1 uM, and 1.6 uM, respectively. PL-21 and
MOLM-16 cells were resistant to venetoclax with IC50 > 10 uM (Figure S1, Tables S1 and 2).
The IC 50 levels of susceptible AML cells were in the range of physiological relevant
concentrations. Venetoclax steady state plasma concentrations of 1.2-3.5 uM were observed
in CLL patients receiving the recommended phase 2 dose of 400 mg per day [31].
Table 2. IC50 values cell lines (uM).
Targeted Therapy
Cell Line Venetoclax A1331825 PQR-309 C-188-9 PTC596 S63845 Trametinib
Target BCL-2 BCL-XL PI3K, mTOR STAT3 BMI-1 MCL-1 MEK
HL-60 1 4 5 5 0.2 0.1 0.08
ML-2 0.08 2 3 4 1.5 0.5 0.12
MOLM-13 0.1 6 2 4 0.3 0.01 0.12
MOLM-16 >10 2 10 >10 1.1 10 10
OCI-AML3 0.2 4 10 8 0.5 0.2 0.1
PL-21 10 2 10 >10 0.8 1 10
SKM-1 2 8 3 8 1.2 0.5 0.12
OCI-Ly1 0.06 8 1 8 1 0.12 0.3
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In order to find effective treatment combinations, we focused on inhibitors with the
potential to elicit synergistic effects in combination with venetoclax. These included tar-
geted compounds tested in previous studies like BMI1-, MCL1-, and MEK- inhibitors [8,9]
as well as BCL-XL-, PI3K- and STAT3 inhibitors as indicated in Figure 1. With respect to
the MCL-1 inhibitor 563845, we found that PL-21 and MOLM-16 cells were resistant with
IC50 > 10 pM, while the other AML cell lines were susceptible with IC50 of 100-500 nM.
With respect to the BCL-XL inhibitor A1331825, PL-21 and MOLM-16 cells were susceptible
with IC50 of 2-4 uM, while other AML cell lines were resilient with IC50 values of 5-10 pM.
With respect to the dual PI3K-mTOR inhibitor bimiralisib, the PTEN deleted OCI-Ly1
cells were most sensitive with an IC50 of 1 uM, the FLT3-mutated MOLM-13 with IC50 of
2 uM, ML-2 and SKM-1 with IC50 of 3 uM, while OCI-AML3, PL-21 and MOLM-16 were
resilient with IC50 of 10 uM. With respect to the BMI-1 inhibitor PTC596, ML-2, PL-21 and
MOLM-16 cells had IC50 >1 uM, while the other AML cell lines were susceptible with IC50
in the range of 200-500 nM. With respect to the MEK inhibitor trametinib, HL-60, ML-2,
MOLM-13, OCI-AML3 and SKM-1 cells were most susceptible with IC50 of 80-120 nM,
while MOLM-16 and PL.-21 cells were resistant with IC50 of 10 uM. The IC50 levels of
susceptible AML cells were in the range of physiologically relevant concentrations: Bimi-
ralisib plasma levels were 2 uM in patients treated for solid tumors [32]; A-1331852 plasma
levels were 2 uM in rat p.o. [33]; PTC-596 cmax ranged from 1 to 5 uM in patients with
advanced tumors [34]; trametinib plasma levels were 20 nM in patients treated for BRAF
melanoma [35]. Only for the STAT3 inhibitor C-188-9 the in vitro IC50 levels of AML cells
exceeded the 2 M plasma concentration determined in PDX mice [36]. The in vitro IC50
of C-188-9 was in the range of 4-8 uM in AML cell lines, and in the range of 8-18 uM in
primary AML samples [37].
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Figure 1. Schematic representation of signaling pathways in myeloid cells. The inducible growth
factor receptor FLT3 signals via PI3K-AKT-mTOR and RAS-MEK-ERK (black arrows). FLT3-ITD, a
constitutively active growth factor receptor, additionally induces PTPN11-STAT5 (red arrows). Acti-
vated cytokine receptors signal via Janus kinase (JAK)-signal transducer and activator of transcription

(STAT) pathway. Signal transduction leads to inhibition of the tumor suppressor p53 and induction
of the anti-apoptotic BH3 proteins BCL2, BCL-XL, and MCL1, thereby promoting proliferation and
cell growth of myeloid cells. Oncogenic functions are indicated in red, tumor suppressor functions in
green, chemical inhibitors in blue.
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2.2. Synergistic Effects on Cell Viability in AML Cell Lines Treated with Venetoclax Combinations

Cell viability was determined in seven AML cell lines and one BCL2-driven DLBCL
cell line treated with increasing dosages of single compounds and in combination using a
variety of targeted therapies including the BCL-XL inhibitor A1331825, the PI3K inhibitor
bimiralisib (PCR309), the STAT3 inhibitor C-188-9, the BMI-1 inhibitor PTC596, the MCL1
inhibitor 563845, and the MEK inhibitor trametinib. Drug concentrations in the combi-
nation studies were chosen to correspond to minimally effective concentrations in single
compound assays determined in initial titration. Five AML cell lines and OCI-Ly1 were
susceptible to 100 nM venetoclax and multiple combination treatments, while PL-21 and
MOLM-16 cells were resistant to 100 nM venetoclax and most combination treatments,
with the exception of venetoclax and A1331825 (Figure 2). Across the panel of AML cell
lines, cytotoxic effects were enhanced in the combination treatments, for venetoclax and
bimiralisib (p = 0.002), trametinib (p = 0.003), S63845 (p = 0.005), A1331825 (p = 0.01), PTC596
(p = 0.01), or C-188-9 (p = 0.04), Combination indexes were calculated according to Chou
Talalay [38]. Synergistic effects on cell viability were calculated to be moderate to strong
for venetoclax combined with 563845, A1331825, trametinib or bimiralisib, and mild to
moderate for venetoclax combined with PTC596 or C-188-9 (Table 3).
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Figure 2. Susceptibility of leukemic cells to venetoclax combination treatment. Cell viability was
determined in one lymphoma and seven AML cell lines treated for 20 h with single compounds
and in combination with 100 nM venetoclax (VC) and 1 uM A1331825 (A), 1 uM bimiralisib (B),
1 uM C188-9 (C), 200 nM PTC596 (D), 100 nM S63845 (E), or 100 nM trametinib (F). Significance was
calculated in a graph pad prism using grouped analysis with paired ¢-test comparing cell viabilities of
VC treated and combination treated cells. A significance level of 0.05 indicates a 5% risk of concluding
that a difference exists when there is no actual difference.
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Table 3. Combination index values of AML cell lines.

Venetoclax Combination Treatment

Cell Line A1331825 Bimiralisib C188-9 PTC596 $63845 Trametinib

HL-60 0.6-0.8 0.2-0.4 0.4-0.6 0.2-0.4 0.4-0.6 0.2-0.4
ML-2 0.3-0.5 0.3-0.5 09-1.1 0.8-1.0 0.1-0.3 0.3-0.5
MOLM-13 0.2-0.4 0.3-0.5 09-1.1 0.6-0.8 0.2-0.4 0.2-0.4
MOLM-16 0.2-0.4 >1.1 0.3-0.5 0.7-0.9 0.7-0.9 09-1.1
OCI-
AML3 0.2-0.4 0.5-0.7 0.8-1.0 0.6-0.8 0.2-0.4 0.3-0.5
PL-21 0.4-0.6 0.8-1.0 0.5-0.7 09-1.1 >1.1 09-11
SKM-1 <0.1 0.3-0.5 0.7-0.9 0.3-0.5 <0.1 <0.1
OCI-Ly1 0.4-0.6 0.6-0.8 0.7-0.9 0.8-1.0 0.4-0.6 nd

Combination indexes (CI) were calculated according to Chou Talalay [38]. Interpretation: CI = 0.1-0.3 strong
synergy, CI = 0.3-0.7 moderate synergy, CI = 0.7-0.9 mild synergy, CI = 0.9-1.1 additive effects, CI > 1.1 antagonis-
tic effects.

2.3. Altered Susceptibility to Targeted Therapies in AML Cells Grown in the Presence of Bone
Marrow Stroma

To investigate the efficacy of venetoclax combination treatments in the bone marrow
environment, cell viability was determined in the susceptible AML cell lines MOLM-13,
ML-2, SKM-1, and OCI-AMLS3, grown in the absence or presence of bone marrow stroma
cells. Stroma cells secrete granulocyte and macrophage colony-stimulating factors (G-CSF,
GM-CSF, M-CSF) and a variety of cytokines, which can induce STAT signaling in leukemic
cells [39-42]. AML cells grown in the presence of bone marrow stroma were generally less
affected by the combination treatment than AML cells grown in the absence of stroma,
indicating a protective effect of the bone marrow environment on AML cells (Figure 3).
We observed that only the combination of venetoclax and MCL1 inhibitor 563845 induced
cell death with equal efficacy in AML cells grown in the absence or presence of bone
marrow stroma. MOLM-13 cells were protected toward venetoclax and combination
treatments when grown on stroma (Figure 3A), ML-2 cells appeared to be protected toward
trametinib when grown on stroma (Figure 3B). OCI-AML3 cells were more susceptible
to venetoclax when grown on stroma, but protected toward all venetoclax combination
treatments (Figure 3C). SKM-1 cells were more susceptible to A1331825, and protected
toward bimiralisib and trametinib, when grown on stroma (Figure 3D).

2.4. Venetoclax Combination Treatment Induces Cell Cycle Arrest, Apoptosis and Cell Death

Effects of venetoclax combination treatments on cell cycle and apoptosis were studied
in the susceptible AML cell lines MOLM-13, ML-2, SKM-1, and OCI-AML3. Treatment with
bimiralisib and venetoclax lead to the induction of apoptosis, cell cycle arrest, and cell death
in MOLM-13 cells (Figures 4, S2 and S3), as well as in SKM-1 (Figures S4 and S5) and ML-2
cells (Figures S6 and S7). Venetoclax treatment lead to an increase in dead cells (Figure 4B),
reduction of vital cells (Figure 4E) and increase in apoptotic cells (Figures 4F and S2). Bimi-
ralisib treatment leads to the induction of G1 cell cycle arrest (Figures 4C and S3). The
induction of apoptosis and cell death, as well as reduction of vital cells was significantly
enhanced in MOLM-13 cells treated with venetoclax and bimiralisib (Figure 4B,E). The
induction of apoptosis and cell death, as well as reduction of vital cells was significantly
enhanced in ML-2 and OCI-AMLS3 cells treated with venetoclax and A1331825 or C-188-9
(Figures S6-58).
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Figure 3. Susceptibility of AML cell lines to targeted therapies in the presence of bone marrow stroma.
MOLM-13 (A), ML-2 (B), OCI-AML3 (C), and SKM-1 cells (D) were treated for 20 h with single
compounds and in combination with venetoclax (VC), A1331825 (A), bimiralisib (B), C-188-9 (C),
PTC596 (P), S63845 (S), or trametinib (T). Cell viability was determined in AML cells grown in the
absence or presence of HS-5 stroma. Concentrations of inhibitors were 100 nM for venetoclax, 563845,
PTC596 and trametinib, 1 uM for bimiralisib, C-188-9, and A133825. Significance was calculated in a
graph pad prism using grouped analysis with multiple unpaired f-test comparing cell viabilities of
treated cells grown in the absence or presence of HS-5 stroma. Significance denoted for p < 0.05 (*);
p < 0.005 (**); p < 0.0005 (***); no significance denoted for p > 0.05 (ns). A significance level of 0.05
indicates a 5% risk of concluding that a difference exists when there is no actual difference.
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Figure 4. Induction of apoptosis, cell cycle arrest and cell death in MOLM_13 cells treated with
venetoclax and bimiralisib. Cytometric analysis of MOLM-13 cells treated for 20 h with 10 nM or 50 nM
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venetoclax (VC) and 0.1 uM or 1 uM bimiralisib alone or in combination. Depending on DAPI
staining intensity cells were classified as subG1, G0/G1, S phase, or G2 phase (A). Treatment-induced
cell death (subGl fraction) (B), and G1 cell cycle arrest (C). Depending on Annexin V and PI staining
intensity, cells were classified as vital (Ann lo, PI 1o), early apoptotic (Ann hi, PI lo), late apoptotic
(Ann hi, PI hi) or necrotic (Ann lo, PI hi) (D). Treatment-induced loss of vital cells (E) and amount
of apoptotic cells (F) were significanty enhanced in the combination treatment. Significance of
differences in median values was calculated by the Mann—Whitney test. Significance denoted for
p <0.05 (*); p < 0.005 (**); no significance denoted for p > 0.05.

2.5. Venetoclax Combination Treatments with Differential Efficacy in Subsets of AML Patients

After initial studies in AML cell lines, the treatment combinations of venetoclax
with A1331825, 563845, bimiralisib, trametinib, C-188-9, or PTC596 were applied to patient-
derived mononuclear cells isolated from peripheral blood (PBMC) or bone marrow (BMMC)
(Table 4). A total of 26 AML, one CML, two NHL, as well as PBMCs of four healthy
donors (HD) were subjected to single compound and combination treatments. The tested
combination treatments induced minor reduction of cell viabilities in mononuclear cells
isolated from healthy donors, and substantial reduction of cell viability in 50-70% of
AML samples treated with venetoclax monotherapy (Figure 5A) or in combination with
A1331825, 563845 or bimiralisib (Figure 5B-D). Venetoclax in combination with trametinib,
C-188-9 or PTC-596 was less effective with substantial reduction of cell viability in 20-40%
of AML samples (Figure 5E,F). The patient samples were divided in two subgroups of
similar size, one with major (strong) response (SR), and one with minor (normal) response
(NR). The median cell viabilities in the SR groups were 70% in 100 nM venetoclax treatment
(Figure 5A), 50% in the venetoclax combination with 1 uM A1331825 or 1 uM bimiralisib
(Figure 5B,C), 43% in combination with 563845 (Figure 5D), 55% in combination with
100 nM trametinib (Figure 5E), 60% in combination with 1 uM C-188-9 (Figure 5F), and 62%
in combination with 200 nM PTC596 (Figure 5G).
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Figure 5. Hematological cells in vitro response to venetoclax and various combination treatments.
Cell viability was determined in mononuclear cells isolated from AML patients or healthy donor
(HD) peripheral blood or bone marrow after 20 h treatment. The patient samples were sorted into two
equally sized groups, one with major (strong) response (SR) and one with minor (normal) response
(NR). Number of samples in each group are indicated in parentheses. Cells were treated in vitro with
100 nM venetoclax (VC) only (A), 100 nM venetoclax in combination with 1 uM A1331825 (B), 1 uM
bimiralisib (C), 100 nM 563845 (D), 100 nM trametinib (E), 1 uM C-188-9 (F), or 200 nM PTC596 (G).
Significance of differences in median values was calculated by Mann-Whitney test.
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Table 4. Clinical characteristics of hematological samples.
ID Disease Mutation Profile Cytogenetics Source PBC BMI CD34+

% % %

AML1 AML-M1 FLT3-ITD (>1), NPM1 normal PB 90 90 5
FLT3-ITD (0.78), U2AF1,
AML2 AML-M1 BCOR, TET2 del(20)(q11.2q13), +8 PB 62 90 18
AML3 AML-Mba NPM1, IDH2 normal BM 87 90 18
AMLA4 AML-M4 FLT3-TKD, KMT2A-MLLT10 t(10;11) PB 88 80 45
AMLS5 AML-M4 NPM1, DNMT3A, NF1 normal BM 8 20 11
NPM1,
AML6 AML-M5 FLT3-TKD (0.63), DNMT3A normal BM 86 95 2
AML7 AML-M5 NPMI, normal PB 1 70 7
FLT3-ITD (0.58), DNMT3A orma
FLT3-ITD, IDH2, .
AMLS AML sec RUNX1, DNMT3A tetraploid, del5q BM 45 80 56
AML9 AML-M1 NPM1, FLT3-ITD (9.45), IDH2 normal PB 94 90 20
AML10 AML-M4 ASXL1, TET2, KRAS normal BM nd 30 1
AML11 AML-M4 NPM1, PTPN11 normal BM 65 65 22
ASXL1, TET2, KRAS,
AML12 AML-M5 SH2B3, U2AF1 mono7 PB 53 80 30
AML13 AML sec TET2, DNMT3A, PTPN11 mono?, del(12), inv(9) PB 36 50 90
CEBPA, ASXL1,

AML14 MDS-AML EZH2, RUNXI normal BM 13 nd 26

AML15 MDS-AML ASXL1, TP53, CALR KMT2A amp (97%) PB 20 20 52

AML16 AML-M1 normal monoY, 11q23.3 PB 96 90 38

NPM1, DNMT3A,

AML17 AML-M4/5 TET2, PTPN11 normal PB 19 90 68

AML18 AML-M1 NPM1, IDH2, SRSF2 normal PB 72 70 1

AML19 AML-M2 IDH2, DNMT3A der(16)t(11;16), +14 BM 33 60 90

ASXL1, IDH2,

AML20 AML-M4 DNMT3A, SRSE2 normal, +8 BM 9 50 82

AMI 21 AML-M2 NPM1, IDH2 normal BM 95 90 24

AML22 AML-MO ASXL1, IDH2, RUNX1 normal BM 64 80 94

RUNX1, TET2, PTPN11, .
AML23 AML-M2 PRPFS, NF1 mono?7, t(9;22) PB 68 45 82
FLT3-TKD, IDH1, NPM1,
AML24 AML sec PTPN11, SRSF2 normal BM 83 90 1
AML25 AML-M1 TP53 complex PB 75 80 97
FLT3-TKD (0.56), TET2,

AMIL26 AML-M4 SRFS2, TP53 normal, +8 PB 46 50 10
CML1 CML BCR-ABL1 (9;22) PB 1 5 42
NHL1 NHL TP53 normal PB nd nd nd

cMyc and BCL2 rearranged ) )
NHL2 NHL (double hit) t(8;14), t(14;18) BM 18 89 58

AML, acute myeloid leukemia; CML, chronic myeloid leukemia; HD, healthy donor, NHL, non-Hodgkin lym-
phoma. FLT3 gene mutant allele ratio is indicated in parentheses. PBC, peripheral blast count; BMI, bone
marrow infiltration.

Potential response markers were deduced from the correlation analysis of cell viabili-
ties grouped according to diagnostic parameters including gene mutation status, peripheral
blood and bone marrow blast cells percentage, and CD34 positivity. In venetoclax-treated
AML, the presence of IDH2 mutation, as well as elevated blast cell percentage in peripheral
blood or bone marrow associated with response, presence of PTPN11, TET2 or ASXL1
mutation indicated lack of response, while FLT3, NPM1, RUNX1, and TP53 status as well as
CD34 levels were not associated with treatment response (Figure 6). In the venetoclax and
A1331825 combination treated AML gene mutation status of TET2, FLT3, and TP53 as well
as CD34, levels were inconsequential, IDH2 mutation and elevated blast cell percentage
were associated with response, while the presence of PTPN11 or ASXL1 mutation indicated
lack of response (Figure 7). In the venetoclax and bimiralisib combination treatment, the
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presence of IDH2 or FLT3 mutation and elevated blast cell counts were indicators of re-
sponse, ASXL1 and TP53 status was inconsequential, while presence of PTPN11 or TET2
mutation indicated a lack of response (Figure 8). In the combination treatment of venetoclax
and 563845, the presence of IDH2 mutation and elevated blast counts were associated with
response, presence of TET2 mutation indicated lack of response, while NPM1, FLT3, ASXL1,
PTPN11, and TP53 status were inconsequential (Figure 9). Notably, AML patient samples
with TET2 mutations carried additional mutations in PTPN11, KRAS, FLT3, or TP53 genes,
all of which may be associated with venetoclax resistance (Table 4). In the combination
treatments of venetoclax and trametinib, C-188-9 or PTC596, the number of samples with
reduced cell viability was small, and response markers were not identified (Figure S9).
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Figure 6. Response markers in venetoclax monotherapy. Cell viability was determined in mononu-
clear cells isolated from AML patients peripheral blood or bone marrow after 20 h treatment with
100 nM venetoclax. Hematological cells were grouped according to single gene mutation status of
IDH2 (A), NPM1 (B), IDH2 and NPM1 (C) FLT3 (D), TET2 (E), TP53 (F), ASXL1 (G), PTPN11 (H),
RUNX1 (I) peripheral blast cell percentage (J), bone marrow blast cell percentage (K), and CD34 posi-
tivity (L). Number of samples in each group are indicated in parentheses. Significance of differences
in median values was calculated by Mann-Whitney test.
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Figure 7. Response markers in venetoclax and A1331825 combination treatment. Cell viability was

determined in mononuclear cells isolated from AML patients peripheral blood or bone marrow after
20 h treatment with 100 nM venetoclax and 1 uM A1331825 (A). Hematological cells were grouped
according to single gene mutation status of IDH2 (B), FLT3 (C), ASXL1 (D), TET2 (E), PTPN11 (F),
TP53 (G), peripheral blast cell percentage (H), bone marrow blast cell percentage (I). Number of
samples in each group are indicated in parentheses. Significance of differences in median values was

calculated by Mann—-Whitney test.
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Figure 8. Response markers in venetoclax and bimiralisib (PQR309) combination treatment. Cell

viability was determined in mononuclear cells isolated from AML patients peripheral blood or bone
marrow after 20 h treatment with 100 nM venetoclax and 1 uM bimiralisib (A). Hematological cells
were grouped according to single gene mutation status of IDH2 (B), NPM1 (C), FLT3 (D), PTPN11 (E),
TET2 (F), ASXL1 (G), peripheral blast cell percentage (H), and bone marrow blast cell percentage (I).
Number of samples in each group are indicated in parentheses. Significance of differences in median

values was calculated by Mann—-Whitney test.
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Figure 9. Response markers in venetoclax and S63845 combination treatment. Cell viability was
determined in mononuclear cells isolated from AML patients peripheral blood or bone marrow after
20 h treatment with 100 nM venetoclax and 100 nM 563845 (A). Hematological cells were grouped
according to single gene mutation status of IDH2 (B), NPM1 (C), FLT3 (D), TET2 (E), PTPN11 (F),
ASXL1 (G), peripheral blast cell percentage (H), and bone marrow blast cell percentage (I). Number
of samples in each group are indicated in parentheses. Significance of differences in median values
was calculated by Mann—-Whitney test.

3. Discussion

Treatment response to the BCL2 inhibitor venetoclax together with hypomethylating
agents may be short-lived with leukemia relapse as the major cause of treatment failure.
Multiple studies have indicated that the upregulation of other anti-apoptotic proteins of
the B-cell lymphoma 2 (BCL2) family and the activation of intracellular signaling pathways
were the major factors leading to resistance to venetoclax [4,5,7]. Accordingly, targeting
anti-apoptotic proteins BCL-XL and MCL-1 as well as targeting signaling pathways leading
to the induction of BCL-XL and MCL-1 may enhance and prolong treatment response to
the BCL-2 inhibitor venetoclax.

In this study, we describe a panel of venetoclax combination treatments with enhanced
cytotoxic effects on AML cells grown in the absence or presence of bone marrow stroma,
including the BCL-XL inhibitor A133825, the MCL1 inhibitor S63845, the BMI1 inhibitor
PTC596, the dual PI3K-mTOR inhibitor bimiralisib, the STAT3 inhibitor C-188-9, and the
MEK inhibitor trametinib. The in vitro IC50 concentrations of the tested inhibitors were
determined to be in the range of physiologically relevant concentrations for all compounds,
except C-188-9, where in vitro IC50 levels exceeded the plasma concentrations present in
PDX mice. AML cells grown in the presence of bone marrow stroma were generally less
affected by the combination treatments than AML cells grown in the absence of stroma,
indicating a protective effect of the bone marrow environment on AML cells. MOLM-13
cells were protected toward venetoclax and combination treatments when grown on stroma,
ML-2 cells were protected toward trametinib, OCI-AMLS3 cells were protected toward all
venetoclax combination treatments, and SKM-1 cells were more susceptible to venetoclax
and A1331825, and protected toward bimiralisib and trametinib, when grown on stroma.
SKM-1 cells have been found to be more susceptible to venetoclax and to the STAT5
inhibitor AC-4-130 when grown on stroma [15]. A cell-type-specific dependence on STAT5
signaling may cause elevated susceptibility to the BCL-2- and BCL-XL inhibitors and a
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reduced response to PI3K- and MEK inhibitors, in the bone marrow environment. Various
cellular components, cytokines, and chemokines present in the bone marrow may impact
AML initiation and therapy resistance at the cellular and molecular level [43,44]. We
found that only the combination of venetoclax and MCL1 inhibitor S63845 induced cell
death with equal efficacy in AML cells grown in the absence or presence of bone marrow
stroma, indicating a potential advantage of applying this combination in the treatment
of AML, as this may eradicate leukemic stem cells in the bone marrow. A synergistic
effect of 563845 toward venetoclax-mediated apoptosis of AML cells in the context of
interaction with the BM microenvironment that intrinsically mediates resistance to BCL2
inhibition has been previously described [45]. Targeting MCL-1 may dysregulate the cellular
metabolism and leukemia-stroma interactions and re-sensitize acute myeloid leukemia to
BCL-2 inhibition [46].

To validate the findings in a translational setting, venetoclax combination treatments
were applied to mononuclear cells isolated from the peripheral blood or bone marrow of
primary AML patients. The addition of the BCL-XL inhibitor A133825, the MCL1 inhibitor
563845 or the PI3K inhibitor bimiralisib to venetoclax induced substantial reductions of cell
viability in 50-70% of the tested AML samples, while the addition of the MEK inhibitor
trametinib, the BMI-1 inhibitor PTC596 or the STAT3 inhibitor C-188-9 to venetoclax was
less effective, with substantial reductions of cell viability in 20-40% of tested AML samples.
In order to define the patient subgroups who may profit from novel targeted combination
therapies, potential response markers were deduced from the correlation analysis of cell
viabilities grouped according to diagnostic parameters, including gene mutation status of
prevalent tumor suppressors and oncogenes, peripheral blood and bone marrow blast cell
percentage, and levels of CD34 positive cells. A significant association between venetoclax
response and elevated blast cell percentage has been previously described [47], and was
reproduced in our study with a boundary value of 60% peripheral blood blast percentage,
and 70% bone marrow blast cell infiltration. Mononuclear cells isolated from AML patients
with elevated blast cell percentage were more susceptible to venetoclax and multiple
venetoclax combinations in vitro. IDH2, NPM1, FLT3, DNMT3A, PTPN11, ASXL1, TET2,
KRAS, RUNX1, and TP53 genes have been described as response markers to venetoclax
treatment [4,5,7,8]. In our study, IDH2 mutation was the single most significant and
consistent biomarker associated with response to venetoclax and multiple venetoclax
combination treatments, while TP53 mutation was not associated with response. Notably,
the TP53 double mutant cell line OCI-Ly1 was most sensitive to venetoclax, while the TP53
double mutant cell line MOLM-16 was resistant.

The mutation status of other genes was relevant to response, however, with differential
indicators in specific venetoclax combination treatments. FLT3 mutations were associated
with response to venetoclax and bimiralisib, but not to venetoclax monotherapy or in com-
bination with A1331825 or 563845, indicating that FLT3-mutated cells may be specifically
susceptible to the combined inhibition of BCL2, PI3K, and mTOR. The TET2 gene mutation
has been associated with response to venetoclax and HMA combination treatment [5]. In
our study, TET2 mutation apparently associated with resistance to venetoclax in combi-
nation with A1331825 or bimiralisib, possibly due to presence of concurrent mutations
in KRAS, PTPN11, or TP53 genes in the primary AML samples. PTPN11 mutations were
associated with lack of response to venetoclax and A1331825 or bimiralisib, but not to
venetoclax and 563845, indicating differential target cell specificity and differential mech-
anisms of action for S63845 in combination with venetoclax. Activating mutations of the
SHP2 protein, encoded by the PTPN11 gene, leads to hyper-activation of the downstream
RAS-MAPK signaling pathway and confer resistance to venetoclax and multiple vene-
toclax combinations. The combination of venetoclax and the MCL1 inhibitor AZD5991
was proposed to overcome this resistance [47]. In accordance, the combination treatment
with venetoclax and the MCL-1 inhibitor 563845 resulted in reduced cell viabilities in
primary AML samples in vitro independent of PTPN11 status. ASXLI mutations have been
associated with distinct epigenomic alterations that lead to sensitivity to venetoclax and



Int. J. Mol. Sci. 2022, 23, 12587

14 of 18

azacytidine [48]. In our study, ASXL1 mutation apparently associated with resistance to
venetoclax in combination with A1331825, but not in combination with S63845 or bimiral-
isib, possibly due to the presence of concurrent mutations in KRAS, PTPN11, RUNX1, or
TP53 genes in the primary AML samples. Further studies in larger cohorts may be required
to validate the relevance of TET2, TP53, and ASXL1 mutation status as response markers
to venetoclax combination treatments. Additional biomarkers of response to venetoclax
combination treatments may arise from studies on expression levels of pro-apoptotic BCL-2
family proteins and anti-apoptotic proteins (BIM, BAX, and BAK) as well as the components
of the upstream signaling pathways in larger cohorts.

In conclusion, different combinations of targeted therapies emerge that are suitable in
the treatment of specific subsets of AML patients. In this study, elevated in vitro efficacies
were detected in the combination treatments of venetoclax with BH3 mimetics A1331852
and S63845 and the dual PI3K-mTOR inhibitor bimiralisib, in AML with elevated blast
cell percentage, at drug concentrations that can be reached in vivo in the plasma, with
different response markers in each combination. The combination treatment of venetoclax
and A1331825 may be effective in the treatment of IDH2-mutated AML in the absence
of PTPN11 mutations, while the combination of venetoclax and 563845 may be effective
in AML in the presence of PTPN11 mutations. The combination treatment of venetoclax
and bimiralisib may be effective in AML with IDH2, NPM1, and FLT3 mutations. We
propose the combination of PI3K/mTOR dual pathway inhibition with bimiralisib and
BCL2 inhibition with venetoclax as a candidate treatment in clinical trials for IDH2- or
FLT3-mutated AML.

4. Materials and Methods
4.1. Patient Samples

Mononuclear cells of AML patients diagnosed and treated at the University Hospital,
Bern, Switzerland, between 2018 and 2022, were included in this study. Informed consent
from all patients was obtained according to the Declaration of Helsinki, and the studies were
approved by decisions of the local ethics committee of Bern, Switzerland, decision number
221/15. Peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear
cells (BMMCs) were collected at the time of diagnosis before initiation of treatment. The
AML cells were analyzed at the central hematology laboratory of the University Hospital
Bern according to state of the art techniques [49]. Mutational screening for FLT3, NPM1,
TP53, and conventional karyotype analysis of at least 20 metaphases were performed in
all samples. In addition, all samples were analyzed by NGS sequencing of the myeloid
panel genes. The genes tested within the NGS panel can be categorized into several
major functional categories, including the spliceosome (U2AF1, SF3B1, SRSF2, and ZRSR?2),
epigenetic modifiers (TET2, DNMT3A, BCOR, ASXL1, IDH1, and IDH2), cohesions (STAG2,
RAD21, and SMC3), transcription factors (TP53, RUNX1, WT1, and ETV6), signaling
molecules (NF1, NRAS, CBL, PTPN11, JAK2, and FLT3), and chromatin modifiers (EZH2
and ASXL1).

4.2. Cell Lines and Cell Culture

Human AML cells lines OCI-AML3 (AML-M4, FLT3wt, DNMT3A R882C, NPM1mut,
and TP53wt), MOLM-13 (AML-MS5, t(9;11), FLT3-ITD, and TP53wt), MOLM-16 (AML-MO,
FLT3wt, TP53mut), ML-2 (AML-M4, t(6;11), FLT3wt, TP53mut) and HL-60 (AML-M2,
FLT3wt, and TP53 null) as well as B-cell lymphoma cell line OCI-Ly1 (B-NHL, t(14;18),
PTEN del, TP53 mut) were supplied by the German Collection of Micro-organisms and Cell
Cultures (DSMZ, Braunschweig, Germany). AML cells were grown in RPMI-1640 medium
(R8758, SIGMA-ALDRICH, St. Louis, MO, USA), OCI-Ly1 in Iscove’s modified Dulbecco
medium (13390, SIGMA-ALDRICH, St. Louis, MO, USA), supplemented with 20% fetal
bovine serum (F7524, SIGMA-ALDRICH, St. Louis, MO, USA), in tissue-culture flasks
(REF 83.3911.502, Sarstedt, Niimbrecht, Germany) in a standard cell culture incubator at
37 °C with 5% CO,. Human bone marrow stroma cell line HS-5 (ATCC® CRL-11882™)
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was supplied by the American tissue culture collection (ATCC, Manassas, VA, USA). HS-5
cells were grown in Dulbecco’s modified Eagle’s medium (D6064, SIGMA-ALDRICH, St.
Louis, MO, USA) supplemented with 10% fetal bovine serum (F7524, SIGMA-ALDRICH, St.
Louis, MO, USA) in standard tissue culture flasks (REF 83.3911.002, Sarstedt, Niimbrecht,
Germany). HS-5 cells secrete granulocyte colony-stimulating factor (G-CSF), granulocyte-
macrophage-CSF (GM-CSF), macrophage-CSF (M-CSF), Kit ligand (KL), macrophage-
inhibitory protein-1 alpha, interleukin-1 alpha (IL-1lalpha), IL-1beta, IL-1RA, IL-6, IL-§,
IL-11, and leukemia inhibitory factor (LIF) [41,42]. For the co-culture assays HS-5 cells were
plated on standard tissue culture plates (REF 83.3920, Sarstedt, Niimbrecht, Germany) on
day 1. On day 2, Nunc 0.4 um cell culture inserts (Thermo Fisher Scientific, Nunc A/S,
Roskilde, Denmark) were placed over the HS-5 feeder layer and AML cells were filled into
the cell culture inserts. On day 3, AML cells were collected from the six well inserts and
replated on tissue culture plates suspension 96 well (REF 83.3924500, Sarstedt, Niinmbrecht,
Germany), before addition of compounds. Cytotoxicity assays were performed on day 4.

4.3. Cytotoxicity Assays

For assays with AML cell lines, cells were plated at a density of 5 x 10°/mL on
tissue culture plates suspension 96 well (REF 83.3924500, Sarstedt, Niimbrecht, Germany),
and treated with targeted compounds. For assays with patient-derived mononuclear
cells, the cells were cultured for 24 h prior to treatment. The BMI1 inhibitor PTC596
(HY-112041), the MCL1 inhibitor 563845 (HY-100741), the MEK inhibitor trametinib (HY-
10999), the STAT3 inhibitor C-188-9 (HY-112288) and the PI3K inhibitor PQR309 (HY-
12868) were purchased at MedChemExpress (Monmouth Junction, NJ, USA). PQR309
(bimiralisib) is a novel brain-penetrant dual PI3K/mTOR inhibitor with in vitro and in vivo
anti-lymphoma activity as single agent and in combination. A stock solution of Venetoclax
was prepared by dissolving a tablet in DMSO (Venclexta®, Abbvie Inc., North Chicago, IL,
USA). Cell viability was determined 20 h after the start of treatment using the MTT-based
cell proliferation kit I (Ref 11465007001, Roche Diagnostics GmbH, Mannheim, Germany).
This time point was selected because the cellular responses were effectual for the calculation
of combination indexes after 20 h of treatment with two compounds in leukemic cells. For
AML cell lines, four independent assays (biological replicates) with four measurements
(technical replicates) per dosage were performed. For hematological patient samples, two
independent assays with three technical replicates per dosage were performed. For the
calculation of combination indexes, two dosages of venetoclax and two dosages of the other
compounds were applied alone and in combination. Combination indexes were calculated
on Compusyn software (version 1.0; ComboSyn, Inc., Paramus, NJ, USA). Data are depicted
as scatter plots with median values and SD. In grouped analysis, significance of differences
in median values was calculated by Mann—-Whitney test.

4.4. Imaging Cytometry

Imaging cytometry was carried out on the NC-3000 cell analyzer (ChemoMetec,
Allerod, Denmark) with reagents supplied by ChemoMetec. To determine the induc-
tion of cell death apoptotic cells were stained with AnnexinV-CF488A conjugate (Biotium,
Fremont, CA, USA) in AnnexinV buffer and Hoechst 33,342 (10 pg/mL) for 15 min at 37 °C,
followed by several washes. Propidium iodide was added shortly before imaging. For cell
cycle analysis, cells were incubated in lysis buffer with DAPI (10 pg/mL) for 5 min at 37 °C
before imaging on the NC-3000 cell analyzer.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ijms232012587/s1.
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