15 research outputs found

    Cellular and molecular basis for endometriosis-associated infertility

    Get PDF
    Endometriosis is a gynecological disease characterized by the presence of endometrial glandular epithelial and stromal cells growing in the extra-uterine environment. The disease afflicts 10%–15% of menstruating women causing debilitating pain and infertility. Endometriosis appears to affect every part of a woman’s reproductive system including ovarian function, oocyte quality, embryo development and implantation, uterine function and the endocrine system choreographing the reproductive process and results in infertility or spontaneous pregnancy loss. Current treatments are laden with menopausal-like side effects and many cause cessation or chemical alteration of the reproductive cycle, neither of which is conducive to achieving a pregnancy. However, despite the prevalence, physical and psychological tolls and health care costs, a cure for endometriosis has not yet been found. We hypothesize that endometriosis causes infertility via multifaceted mechanisms that are intricately interwoven thereby contributing to our lack of understanding of this disease process. Identifying and understanding the cellular and molecular mechanisms responsible for endometriosis-associated infertility might help unravel the confounding multiplicities of infertility and provide insights into novel therapeutic approaches and potentially curative treatments for endometriosis

    Effects of prenatal exposure to xenobiotic estrogen and the development of endometriosis in adulthood

    Get PDF
    Abstract only availableEndometriosis is an estrogen-dependent disease that affects millions of women worldwide, causing pain and infertility. While it is known that retrograde menstruation places endometrial tissue in the peritoneal cavity, it is unclear why it invades and proliferates in women with endometriosis. Studies have shown that other hormone-dependent diseases have a fetal basis (e.g. breast cancer), suggesting that the presence of different hormones before birth may alter the incidence of endometriosis in adulthood. For example, women whose mothers took the synthetic estrogen diethylstilbestrol (DES) during pregnancy had an eighty percent increased incidence of endometriosis. Thus, our hypothesis is that prenatal exposure to xenobiotic estrogen will increase the severity of endometriosis in adulthood in a mouse model of surgically-induced endometriosis. To test this hypothesis, mice were time mated and dosed with vehicle control, 100 ng/kg DES or 10,000 ng/kg DES from days 11-17 of gestation. Surgical induction of endometriosis was performed in adulthood by autotransplantation of one uterine horm. The horn was removed, opened, divided into three pieces, and sutured to the arterial cascade of the intestinal mesentery. The implants became vascularized and formed endometriotic lesions. The mice were then collected at 2 or 4 weeks post-surgery, and the following endpoints were measured: 1) uterine weight; 2) implant size; and 3) implant weight. Additionally, implants were set aside for further analysis of 1) histology; 2) estrogen receptor indicator reporter gene activity; and 3) endometriosis-related gene expression. At the conclusion of this ongoing study, we expect to show whether there is an estrogen-mediated fetal component to endometriosis.Life Sciences Undergraduate Research Opportunity Progra

    Neonatal exposure to xenobiotic estrogen alters the adult immune response and exacerbates endometriosis in mice [abstract]

    Get PDF
    Faculty Mentor: Dr. Susan C. Nagel, Obstetrics/Gynecology, and Women's HealthAbstract only availableEndometriosis is a common medical condition affecting 5-10% of women worldwide, and results in severe cramps, pelvic pain, and infertility. The cause of the disease is still unknown. Endometriosis occurs when endometrial tissue, which escapes into the peritoneal cavity via retrograde menstruation, adheres to other tissues in the cavity and causes irritated, inflamed lesions. Studies have suggested that the risk of developing endometriosis increases in women who have been exposed to xenobiotic (foreign to the body) estrogens during developmental stages of life. Thus, it is our hypothesis that programming of the immune system by xenoestrogens during development could potentially exacerbate endometriosis. This could occur by altering the peritoneal environment and/or the invading endometrial tissue. Therefore, it is our goal to study the effects of neonatal xenoestrogen exposure on the immune system; and ultimately, on the establishment of endometriosis in adulthood. In order to study this response, we dosed two strains of mice (CD1 and C57) with xenobiotic estrogens on postnatal days 2-14. In experiment A, CD1 mice were dosed with vehicle control (corn oil), 20 µg/kg/day, or 200 µg/kg/day bisphenol A. In experiment B, C57 mice were dosed with a vehicle control (corn oil) or 0.1 µg/kg/day diethylstilbestrol. At 8 weeks of age, endometriosis was induced in each strain via both a surgical induction and an injection technique. At 12 weeks, the endometriotic implants were counted and weighed to determine which mice had a greater susceptibility to the condition. Our next objective will be to analyze peritoneal fluid from the treated mice to identify key immune functions (for example, the release of certain cytokines) that may have been programmed by developmental xenoestrogen exposure.Endometriosis is a common medical condition affecting 5-10% of women worldwide, and results in severe cramps, pelvic pain, and infertility.  The cause of the disease is still unknown.  Endometriosis occurs when endometrial tissue, which escapes into the peritoneal cavity via retrograde menstruation, adheres to other tissues in the cavity and causes irritated, inflamed lesions.  Studies have suggested that the risk of developing endometriosis increases in women who have been exposed to xenobiotic (foreign to the body) estrogens during developmental stages of life.  Thus, it is our hypothesis that programming of the immune system by xenoestrogens during development could potentially exacerbate endometriosis.  This could occur by altering the peritoneal environment and/or the invading endometrial tissue.  Therefore, it is our goal to study the effects of neonatal xenoestrogen exposure on the immune system; and ultimately, on the establishment of endometriosis in adulthood.  In order to study this response, we dosed two strains of mice (CD1 and C57) with xenobiotic estrogens on postnatal days 2-14.  In experiment A, CD1 mice were dosed with vehicle control (corn oil), 20 µg/kg/day, or 200 µg/kg/day bisphenol A.  In experiment B, C57 mice were dosed with a vehicle control (corn oil) or 0.1 µg/kg/day diethylstilbestrol.  At 8 weeks of age, endometriosis was induced in each strain via both a surgical induction and an injection technique.  At 12 weeks, the endometriotic implants were counted and weighed to determine which mice had a greater susceptibility to the condition.  Our next objective will be to analyze peritoneal fluid from the treated mice to identify key immune functions (for example, the release of certain cytokines) that may have been programmed by developmental xenoestrogen exposure

    Cellular and molecular basis for endometriosis-associated infertility

    Full text link

    The Interplay of Cell-Cell and Cell-Matrix Interactions in the Invasive Properties of Brain Tumors

    Get PDF
    Impairment of tissue cohesion and the reorganization of the extracellular matrix are crucial events during the progression toward invasive cell phenotype. We studied the in vitro invasion patterns of nine brain tumor cell lines in three-dimensional collagen gels. Cell-cell and cell-matrix interactions were quantified and correlated with the expression level of specific molecules: N-cadherin, matrix metalloproteinases, and their inhibitor. Pattern evolution was studied as a function of time and collagen concentration. Cells with low metalloproteinase expression or high tissue cohesion showed limited invasive potential. Higher metalloproteinase expression and intermediate tissue cohesion resulted in configurations with hypercellular zones surrounding regions mostly devoid of cells and with digested collagen, akin to pseudopalisades in surgically removed malignant astrocytoma specimens. In physical terms, these configurations arise as the result of competition between cell-cell and cell-matrix interactions. Our findings suggest specific ways to characterize, control, or engineer cell migratory patterns and hint at the importance of the interplay between biophysical and biomolecular factors in the characterization of invasive cell behavior and, more generally, in epithelial-mesenchymal transitions
    corecore