36 research outputs found
Digital Drug Safety Surveillance: Monitoring Pharmaceutical Products in Twitter
Background: Traditional adverse event (AE) reporting systems have been slow in adapting to online AE reporting from patients, relying instead on gatekeepers, such as clinicians and drug safety groups, to verify each potential event. In the meantime, increasing numbers of patients have turned to social media to share their experiences with drugs, medical devices, and vaccines. Objective: The aim of the study was to evaluate the level of concordance between Twitter posts mentioning AE-like reactions and spontaneous reports received by a regulatory agency. Methods: We collected public English-language Twitter posts mentioning 23 medical products from 1 November 2012 through 31 May 2013. Data were filtered using a semi-automated process to identify posts with resemblance to AEs (Proto-AEs). A dictionary was developed to translate Internet vernacular to a standardized regulatory ontology for analysis (MedDRA®). Aggregated frequency of identified product-event pairs was then compared with data from the public FDA Adverse Event Reporting System (FAERS) by System Organ Class (SOC). Results: Of the 6.9 million Twitter posts collected, 4,401 Proto-AEs were identified out of 60,000 examined. Automated, dictionary-based symptom classification had 72 % recall and 86 % precision. Similar overall distribution profiles were observed, with Spearman rank correlation rho of 0.75 (p < 0.0001) between Proto-AEs reported in Twitter and FAERS by SOC. Conclusion: Patients reporting AEs on Twitter showed a range of sophistication when describing their experience. Despite the public availability of these data, their appropriate role in pharmacovigilance has not been established. Additional work is needed to improve data acquisition and automation
Recommended from our members
Application of change point analysis to daily influenza-like illness emergency department visits
Background: The utility of healthcare utilization data from US emergency departments (EDs) for rapid monitoring of changes in influenza-like illness (ILI) activity was highlighted during the recent influenza A (H1N1) pandemic. Monitoring has tended to rely on detection algorithms, such as the Early Aberration Reporting System (EARS), which are limited in their ability to detect subtle changes and identify disease trends. Objective: To evaluate a complementary approach, change point analysis (CPA), for detecting changes in the incidence of ED visits due to ILI. Methodology and principal findings Data collected through the Distribute project (isdsdistribute.org), which aggregates data on ED visits for ILI from over 50 syndromic surveillance systems operated by state or local public health departments were used. The performance was compared of the cumulative sum (CUSUM) CPA method in combination with EARS and the performance of three CPA methods (CUSUM, structural change model and Bayesian) in detecting change points in daily time-series data from four contiguous US states participating in the Distribute network. Simulation data were generated to assess the impact of autocorrelation inherent in these time-series data on CPA performance. The CUSUM CPA method was robust in detecting change points with respect to autocorrelation in time-series data (coverage rates at 90% when −0.2≤ρ≤0.2 and 80% when −0.5≤ρ≤0.5). During the 2008–9 season, 21 change points were detected and ILI trends increased significantly after 12 of these change points and decreased nine times. In the 2009–10 flu season, we detected 11 change points and ILI trends increased significantly after two of these change points and decreased nine times. Using CPA combined with EARS to analyze automatically daily ED-based ILI data, a significant increase was detected of 3% in ILI on April 27, 2009, followed by multiple anomalies in the ensuing days, suggesting the onset of the H1N1 pandemic in the four contiguous states. Conclusions and significance As a complementary approach to EARS and other aberration detection methods, the CPA method can be used as a tool to detect subtle changes in time-series data more effectively and determine the moving direction (ie, up, down, or stable) in ILI trends between change points. The combined use of EARS and CPA might greatly improve the accuracy of outbreak detection in syndromic surveillance systems
Recommended from our members
Self-Reported Fever and Measured Temperature in Emergency Department Records Used for Syndromic Surveillance
Many public health agencies monitor population health using syndromic surveillance, generally employing information from emergency department (ED) visit records. When combined with other information, objective evidence of fever may enhance the accuracy with which surveillance systems detect syndromes of interest, such as influenza-like illness. This study found that patient chief complaint of self-reported fever was more readily available in ED records than measured temperature and that the majority of patients with an elevated temperature recorded also self-reported fever. Due to its currently limited availability, we conclude that measured temperature is likely to add little value to self-reported fever in syndromic surveillance for febrile illness using ED records
Digital Drug Safety Surveillance: Monitoring Pharmaceutical Products in Twitter
BackgroundTraditional adverse event (AE) reporting systems have been slow in adapting to online AE reporting from patients, relying instead on gatekeepers, such as clinicians and drug safety groups, to verify each potential event. In the meantime, increasing numbers of patients have turned to social media to share their experiences with drugs, medical devices, and vaccines.ObjectiveThe aim of the study was to evaluate the level of concordance between Twitter posts mentioning AE-like reactions and spontaneous reports received by a regulatory agency.MethodsWe collected public English-language Twitter posts mentioning 23 medical products from 1 November 2012 through 31 May 2013. Data were filtered using a semi-automated process to identify posts with resemblance to AEs (Proto-AEs). A dictionary was developed to translate Internet vernacular to a standardized regulatory ontology for analysis (MedDRA®). Aggregated frequency of identified product-event pairs was then compared with data from the public FDA Adverse Event Reporting System (FAERS) by System Organ Class (SOC).ResultsOf the 6.9 million Twitter posts collected, 4,401 Proto-AEs were identified out of 60,000 examined. Automated, dictionary-based symptom classification had 72% recall and 86% precision. Similar overall distribution profiles were observed, with Spearman rank correlation rho of 0.75 (p<0.0001) between Proto-AEs reported in Twitter and FAERS by SOC.ConclusionPatients reporting AEs on Twitter showed a range of sophistication when describing their experience. Despite the public availability of these data, their appropriate role in pharmacovigilance has not been established. Additional work is needed to improve data acquisition and automation
Recommended from our members
Erratum to: Digital Drug Safety Surveillance: Monitoring Pharmaceutical Products in Twitter
Web-based Investigation of Multistate Salmonellosis Outbreak
We investigated a large outbreak of Salmonella enterica serotype Javiana among attendees of the 2002 U.S. Transplant Games, including 1,500 organ transplant recipients. Web-based survey methods identified pre-diced tomatoes as the source of this outbreak, which highlights the utility of such investigative tools to cope with the changing epidemiology of foodborne diseases
One-shot Localization and Segmentation of Medical Images with Foundation Models
Recent advances in Vision Transformers (ViT) and Stable Diffusion (SD) models
with their ability to capture rich semantic features of the image have been
used for image correspondence tasks on natural images. In this paper, we
examine the ability of a variety of pre-trained ViT (DINO, DINOv2, SAM, CLIP)
and SD models, trained exclusively on natural images, for solving the
correspondence problems on medical images. While many works have made a case
for in-domain training, we show that the models trained on natural images can
offer good performance on medical images across different modalities
(CT,MR,Ultrasound) sourced from various manufacturers, over multiple anatomical
regions (brain, thorax, abdomen, extremities), and on wide variety of tasks.
Further, we leverage the correspondence with respect to a template image to
prompt a Segment Anything (SAM) model to arrive at single shot segmentation,
achieving dice range of 62%-90% across tasks, using just one image as
reference. We also show that our single-shot method outperforms the recently
proposed few-shot segmentation method - UniverSeg (Dice range 47%-80%) on most
of the semantic segmentation tasks(six out of seven) across medical imaging
modalities.Comment: Accepted at NeurIPS 2023 R0-FoMo Worksho
Participatory Epidemiology: Use of Mobile Phones for Community-Based Health Reporting
Clark Freifeld and colleagues discuss mobile applications, including their own smartphone application, that show promise for health monitoring and information sharing