13 research outputs found
ΠΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠΈΠ½Ρ ΡΠΎΠ½ΠΈΠ·ΠΌΠ° ΡΠ°ΡΡΠΈΡΡ Ρ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΉ Π²ΠΎΠ»Π½ΠΎΠΉ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ
It is shown analytically and numerically that eο¬ective acceleration of the particle at the small distance at the regime of cyclotron autoresonance, supported with the help of synshronizied electrostatic ο¬eld, is possible. It is shown that in the accompanying reference frame moving with the electric drift velocity the new resonant eο¬ects arise connected with the eο¬ects of ο¬nite gyroradius. It is noted that in the case of the large enough electric drift velocity in the accompanying reference frame the averaging of the motion equations becomes invalid.ΠΠ½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈ ΠΈ ΡΠΈΡΠ»Π΅Π½Π½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ΅ ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΡΠ°ΡΡΠΈΡΡ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½Π½ΠΎΠΉ ΡΠ»Π΅ΠΊΡΡΠΎΠΌΠ°Π³Π½ΠΈΡΠ½ΠΎΠΉ Π²ΠΎΠ»Π½ΠΎΠΉ Π½Π° Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠΈΠΊΠ»ΠΎΡΡΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π²ΡΠΎΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ°, ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΈΠ½Ρ
ΡΠΎΠ½ΠΈΠ·ΠΈΡΡΡΡΠ΅Π³ΠΎ ΡΠ»Π΅ΠΊΡΡΠΎΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ»Ρ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π² ΡΠΎΠΏΡΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΎΡΡΡΡΡΠ°, Π΄Π²ΠΈΠΆΡΡΠ΅ΠΉΡΡ ΡΠΎ ΡΠΊΠΎΡΠΎΡΡΡΡ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄ΡΠ΅ΠΉΡΠ°, Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡΡ Π½ΠΎΠ²ΡΠ΅ ΡΠ΅Π·ΠΎΠ½Π°Π½ΡΠ½ΡΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ, ΡΠ²ΡΠ·Π°Π½Π½ΡΠ΅ Ρ ΡΡΡΠ΅ΠΊΡΠ°ΠΌΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ Π³ΠΈΡΠΎΡΠ°Π΄ΠΈΡΡΠ° ΡΠ°ΡΡΠΈΡΡ. ΠΡΠΌΠ΅ΡΠ°Π΅ΡΡΡ, ΡΡΠΎ Π² ΡΠ»ΡΡΠ°Π΅ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄ΡΠ΅ΠΉΡΠ° ΡΡΡΠ΅Π΄Π½Π΅Π½ΠΈΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°ΡΡΠΈΡΡ Π² ΡΠΎΠΏΡΡΡΡΠ²ΡΡΡΠ΅ΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π½Π΅ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΡΠΌ
Π ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ΅ΠΉΡΠΌΠΎΡΡΡΠΎΠΉΡΠΈΠ²ΠΎΡΡΠΈ ΡΡΡΠΎΠ΅Π½ΠΈΠΉ
In the paper we discuss the influence of forcing oscillations of a construction's support during earthquake on oscillations of a construction itself in case of the simplest mathematical models with respect to subsequent computer realization.Π ΡΠ°Π±ΠΎΡΠ΅ ΠΎΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π²ΡΠ½ΡΠΆΠ΄Π°ΡΡΠΈΡ
ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΠΏΠΎΡΡ ΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΡΠΈ Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΡΡ
Π½Π° Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΡΠ°ΠΌΠΎΠ³ΠΎ ΡΡΡΠΎΠ΅Π½ΠΈΡ Π² ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΡ
ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΈ Ρ ΡΡΡΡΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΉ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ°ΡΡΡΡΠΎΠ² Π½Π° ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ΅
ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΠΏΠΎΡ Π² Sage
The article discusses the kinematic support, which allows reducing the horizontal dynamic effects on the building during earthquakes. The model of a seismic isolation support is considered from the point of view of classical mechanics, that is, we assume that the support is absolutely solid, oscillating in a vertical plane above a fixed horizontal solid plate. This approach allows a more adequate description of the interaction of the support with the soil and the base plate of the building. The paper describes the procedure for reducing the complete system of equations of motion of a massive rigid body on a fixed horizontal perfectly smooth plane to a form suitable for applying the finite difference method and its implementation in the Sage computer algebra system. The numerical calculations by the Euler method for grids with different number of elements are carried out and a mathematical model of the support as a perfectly rigid body in the Sage computer algebra system is implemented. The article presents the intermediate results of numerical experiments performed in Sage and gives a brief analysis (description) of the results.Π ΡΡΠ°ΡΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½Π° ΠΊΠΈΠ½Π΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΠΏΠΎΡΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ½ΠΈΠΆΠ°ΡΡ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄ΠΈΠ½Π°ΠΌΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π½Π° Π·Π΄Π°Π½ΠΈΠ΅ Π²ΠΎ Π²ΡΠ΅ΠΌΡ Π·Π΅ΠΌΠ»Π΅ΡΡΡΡΠ΅Π½ΠΈΠΉ. ΠΠΎΠ΄Π΅Π»Ρ ΡΠ΅ΠΉΡΠΌΠΎΠΈΠ·ΠΎΠ»ΠΈΡΡΡΡΠ΅ΠΉ ΠΎΠΏΠΎΡΡ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ Ρ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠ΅Ρ
Π°Π½ΠΈΠΊΠΈ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ, ΡΡΠΎ ΠΎΠΏΠΎΡΠ° - Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎ ΡΠ²ΡΡΠ΄ΠΎΠ΅ ΡΠ΅Π»ΠΎ, ΠΊΠΎΠ»Π΅Π±Π»ΡΡΠ΅Π΅ΡΡ Π² Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ Π½Π°Π΄ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠ²ΡΡΠ΄ΠΎΠΉ ΠΏΠ»ΠΈΡΠΎΠΉ. ΠΠ°Π½Π½ΡΠΉ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π±ΠΎΠ»Π΅Π΅ Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎ ΠΎΠΏΠΈΡΠ°ΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΎΠΏΠΎΡΡ Ρ Π³ΡΡΠ½ΡΠΎΠΌ ΠΈ ΠΏΠ»ΠΈΡΠΎΠΉ Π·Π΄Π°Π½ΠΈΡ. Π ΡΠ°Π±ΠΎΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½Π° ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ° ΡΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠΎΠ»Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠΆΡΠ»ΠΎΠ³ΠΎ ΡΠ²ΡΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π° ΠΏΠΎ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΠΎΠΉ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎ Π³Π»Π°Π΄ΠΊΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ ΠΊ Π²ΠΈΠ΄Ρ, ΠΏΡΠΈΠ³ΠΎΠ΄Π½ΠΎΠΌΡ Π΄Π»Ρ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ
ΡΠ°Π·Π½ΠΎΡΡΠ΅ΠΉ, ΠΈ Π΅Ρ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±ΡΡ Sage. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Ρ ΡΠΈΡΠ»Π΅Π½Π½ΡΠ΅ ΡΠ°ΡΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΠΉΠ»Π΅ΡΠ° Π΄Π»Ρ ΡΠ΅ΡΠΎΠΊ Ρ ΡΠ°Π·Π½ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΡΠ°Π·Π±ΠΈΠ΅Π½ΠΈΠΉ ΠΈ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΠΏΠΎΡΡ ΠΊΠ°ΠΊ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎ ΡΠ²ΡΡΠ΄ΠΎΠ³ΠΎ ΡΠ΅Π»Π° Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±ΡΡ Sage. Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΡΠ½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΈΡΠ»Π΅Π½Π½ΡΡ
ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠΎΠ², ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π² Sage, ΠΈ Π΄Π°Π½ ΠΊΡΠ°ΡΠΊΠΈΠΉ Π°Π½Π°Π»ΠΈΠ· (ΠΎΠΏΠΈΡΠ°Π½ΠΈΠ΅) ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ²
Description of high-power laser radiation in the paraxial approximation
We consider the feasibility of an adequate description of a laser pulse of arbitrary shape within the framework of the paraxial approximation. In this approximation, using a parabolic equation and an expansion in the small parameter, expressions are obtained for the field of a sufficiently intense laser radiation given in the form of axially symmetric Hermite-Gaussian beams of arbitrary mode and arbitrary polarisation. It is shown that in the case of sufficiently short pulses, corrections to the transverse components of the laser field are the first-order rather than the second-order quantities in the expansion in the small parameter. The peculiarities of the description of higher-mode Hermite-Gaussian beams are outlined. Β© 2015 Kvantovaya Elektronika and Turpion Ltd