137 research outputs found

    Growing length and time scales in glass forming liquids

    Full text link
    We study the growing time scales and length scales associated with dynamical slow down for a realistic glass former, using computer simulations. We perform finite size scaling to evaluate a length scale associated with dynamical heterogeneity which grows as temperature decreases. However, relaxation times which also grow with decreasing temperature, do not show the same kind of scaling behavior with system size as the dynamical heterogeneity, indicating that relaxation times are not solely determined by the length scale of dynamical heterogeneity. We show that relaxation times are instead determined, for all studied system sizes and temperatures, by configurational entropy, in accordance with the Adam-Gibbs relation, but in disagreement with theoretical expectations based on spin-glass models that configurational entropy is not relevant at temperatures substantially above the critical temperature of mode coupling theory. The temperature dependence of the heterogeneity length scale shows significant deviations from theoretical expectations, and the length scale one may extract from the system size dependence of the configurational entropy has much weaker temperature dependence compared to the heterogeneity length scale at all studied temperatures. Our results provide new insights into the dynamics of glass-forming liquids and pose serious challenges to existing theoretical descriptions

    Short-time β\beta-relaxation in glass-forming liquids is cooperative in nature

    Full text link
    Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. The short-time β\beta-relaxation is generally attributed to spatially local processes involving the rattling motion of a particle in the transient cage formed by its neighbors. Using molecular dynamics simulations for three model glass-forming liquids, we show that the β\beta-relaxation is actually cooperative in nature. Using finite-size scaling analysis, we extract a growing length-scale associated with β\beta-relaxation from the observed dependence of the β\beta-relaxation time on the system size. Remarkably, the temperature dependence of this length scale is found to be the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time α\alpha-relaxation regime. These results show that the conventional interpretation of β\beta-relaxation as a local process is too simplified and provide a clear connection between short-time dynamics and long-time structural relaxation in glass-forming liquids

    Breakdown of the Stokes-Einstein relation in two, three and four dimensions

    Full text link
    The breakdown of the Stokes-Einstein (SE) relation between diffusivity and viscosity at low temperatures is considered to be one of the hallmarks of glassy dynamics in liquids. Theoretical analyses relate this breakdown with the presence of heterogeneous dynamics, and by extension, with the fragility of glass formers. We perform an investigation of the breakdown of the SE relation in 2, 3 and 4 dimensions, in order to understand these interrelations. Results from simulations of model glass formers show that the degree of the breakdown of the SE relation decreases with increasing spatial dimensionality. The breakdown itself can be rationalized via the difference between the activation free energies for diffusivity and viscosity (or relaxation times) in the Adam-Gibbs relation in three and four dimensions. The behavior in two dimensions also can be understood in terms of a generalized Adam-Gibbs relation that is observed in previous work. We calculate various measures of heterogeneity of dynamics and find that the degree of the SE breakdown and measures of heterogeneity of dynamics are generally well correlated but with some exceptions. The two dimensional systems we study show deviations from the pattern of behavior of the three and four dimensional systems both at high and low temperatures. The fragility of the studied liquids is found to increase with spatial dimensionality, contrary to the expectation based on the association of fragility with heterogeneous dynamics

    Block Analysis for the Calculation of Dynamic and Static Length Scales in Glass-Forming Liquids

    Full text link
    We present {\it block analysis}, an efficient method to perform finite-size scaling for obtaining the length scale of dynamic heterogeneity and the point-to-set length scale for generic glass-forming liquids. This method involves considering blocks of varying sizes embedded in a system of a fixed (large) size. The length scale associated with dynamic heterogeneity is obtained from a finite-size scaling analysis of the dependence of the four-point dynamic susceptibility on the block size. The block size dependence of the variance of the α\alpha-relaxation time yields the static point-to-set length scale. The values of the obtained length scales agree quantitatively with those obtained from other conventional methods. This method provides an efficient experimental tool for studying the growth of length scales in systems such as colloidal glasses for which performing finite-size scaling by carrying out experiments for varying system sizes may not be feasible.Comment: 5 pages, 3 figure

    Glass Transition in Supercooled Liquids with Medium Range Crystalline Order

    Full text link
    The origins of rapid dynamical slow down in glass forming liquids in the growth of static length scales, possibly associated with identifiable structural ordering, is a much debated issue. Growth of medium range crystalline order (MRCO) has been observed in various model systems to be associated with glassy behaviour. Such observations raise the question about the eventual state reached by a glass former, if allowed to relax for sufficiently long times. Is a slowly growing crystalline order responsible for slow dynamics? Are the molecular mechanisms for glass transition in liquids with and without MRCO the same? If yes, glass formers with MRCO provide a paradigm for understanding glassy behaviour generically. If not, systems with MRCO form a new class of glass forming materials whose molecular mechanism for slow dynamics may be easier to understand in terms of growing crystalline order, and should be approached in that manner, even while they will not provide generic insights. In this study we perform extensive molecular dynamics simulations of a number of glass forming liquids in two dimensions and show that the static and dynamic properties of glasses with MRCO are different from other glass forming liquids with no predominant local order. We also resolve an important issue regarding the so-called Point-to-set method for determining static length scales, and demonstrate it to be a robust, order agnostic, method for determining static correlation lengths in glass formers

    Equilibrium glassy phase in a polydisperse hard sphere system

    Full text link
    The phase diagram of a polydisperse hard sphere system is examined by numerical minimization of a discretized form of the Ramakrishnan-Yussouff free energy functional. Crystalline and glassy local minima of the free energy are located and the phase diagram in the density-polydispersity plane is mapped out by comparing the free energies of different local minima. The crystalline phase disappears and the glass becomes the equilibrium phase beyond a "terminal" value of the polydispersity. A crystal to glass transition is also observed as the density is increased at high polydispersity. The phase diagram obtained in our study is qualitatively similar to that of hard spheres in a quenched random potential.Comment: 4 pages, 4 figure

    Complex Correlation Measure: a novel descriptor for Poincaré plot

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poincaré plot is one of the important techniques used for visually representing the heart rate variability. It is valuable due to its ability to display nonlinear aspects of the data sequence. However, the problem lies in capturing temporal information of the plot quantitatively. The standard descriptors used in quantifying the Poincaré plot (<it>SD</it>1, <it>SD</it>2) measure the gross variability of the time series data. Determination of advanced methods for capturing temporal properties pose a significant challenge. In this paper, we propose a novel descriptor "Complex Correlation Measure (<it>CCM</it>)" to quantify the temporal aspect of the Poincaré plot. In contrast to <it>SD</it>1 and <it>SD</it>2, the <it>CCM </it>incorporates point-to-point variation of the signal.</p> <p>Methods</p> <p>First, we have derived expressions for <it>CCM</it>. Then the sensitivity of descriptors has been shown by measuring all descriptors before and after surrogation of the signal. For each case study, <it>lag-1 </it>Poincaré plots were constructed for three groups of subjects (Arrhythmia, Congestive Heart Failure (CHF) and those with Normal Sinus Rhythm (NSR)), and the new measure <it>CCM </it>was computed along with <it>SD</it>1 and <it>SD</it>2. ANOVA analysis distribution was used to define the level of significance of mean and variance of <it>SD</it>1, <it>SD</it>2 and <it>CCM </it>for different groups of subjects.</p> <p>Results</p> <p><it>CCM </it>is defined based on the autocorrelation at different lags of the time series, hence giving an in depth measurement of the correlation structure of the Poincaré plot. A surrogate analysis was performed, and the sensitivity of the proposed descriptor was found to be higher as compared to the standard descriptors. Two case studies were conducted for recognizing arrhythmia and congestive heart failure (CHF) subjects from those with NSR, using the Physionet database and demonstrated the usefulness of the proposed descriptors in biomedical applications. <it>CCM </it>was found to be a more significant (<it>p </it>= 6.28E-18) parameter than <it>SD</it>1 and <it>SD</it>2 in discriminating arrhythmia from NSR subjects. In case of assessing CHF subjects also against NSR, <it>CCM </it>was again found to be the most significant (<it>p </it>= 9.07E-14).</p> <p>Conclusion</p> <p>Hence, <it>CCM </it>can be used as an additional Poincaré plot descriptor to detect pathology.</p
    corecore