55 research outputs found

    Mp activity in cardioblasts depends on Slit.

    No full text
    <p>Cardiac cross sections of wild type (A, A′, A″), <i>slit</i> mutants (B, B′, B″), embryos overexpressing Mp in cardioblasts (C, C′,C″), embryos overexpressing Robo in cardioblasts (D, D′,D″), and embryos overexpressing Mp in <i>slit</i> mutant background (E, E′, E″), all labeled with anti Dg (red) and with anti Armadillo (green). Arrowheads in A–A″ mark the dorsal and ventral junctions and in B–E″ the dorsal junction. Note that overexpression of Mp is not capable of promoting large and curved lumen in <i>slit</i> mutant hearts, and the lack of Armadillo vesicles in these cells. C′ and D′- White arrows mark Armadillo vesicles. C-cardioblast cells. The bar in A is 5 µm and represents the magnification in all panels.</p

    Mp exhibits heart lumen-specific distribution and is necessary and sufficient for cardiac lumen formation.

    No full text
    <p>Upper panel: a scheme of the three stages of cardiac tube closure: I- cardioblasts approach the dorsal midline. II- formation of the dorsal junction and the inward curvature of the luminal membrane. III- formation of the ventral junction and tube closure. Mp initial expression is observed between stage II to stage III (<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1003597#pgen.1003597.s001" target="_blank">Figure S1</a>). A whole mount wild type embryo at stage 16 labeled for Mp (A,A′, green), and Mef-2 (A, red). The heart and aorta domains are indicated. The arrowhead in A indicates a pair of ostia cells which do not express Mp. B-I are cross sections of stage 16 embryos. Wild type heart (B,B′) or aorta (C,C′) labeled with Dystroglycan (Dg, red, B,C) and Mp (green B,B′,C,C′) demonstrate the cardiac specific distribution of Mp in the heart lumen. D-I are cross sections of: wild type heart (D), <i>mp</i> mutant heart (E), heart cardioblasts overexpressing Mp (F), wild type aorta (G) <i>mp</i> mutant aorta (H), aorta cardioblasts overexpressing Mp (I), labeled with Dg (red) and with anti HOW, which labels the cardioblast cytoplasm (green). Arrowheads in D-I mark the cardiac lumen. Note the formation of large cardiac lumen (29 µm<sup>2</sup>, F), following Mp overexpression in the heart and the formation of a heart-like lumen in the aorta following Mp overexpression in the aorta. J - quantification of the lumen cross section area, K- quantification of the luminal perimeter, L- quantification of cardioblast cross section area measured from 3–4 cross sections per embryo in multiple number of embryos (n). A statistically significant reduction (indicated by three stars) in both cardiac luminal area (reduction of 55%, p = 8.6E-0.6) and perimeter (reduction of 27%, p = 3.8E-0.50) was observed. A slight reduction in cardioblasts total area was also detected (13%, p = 0.02, one star). C- cardioblast cell. Scale bars represent 20 µm in A,A′, and 5 µm in all cross sections (B,C, D–L).</p

    Mp activity reduces F-actin levels at the cardiac luminal membrane in a <i>slit</i> dependent manner.

    No full text
    <p>Cardiac cross sections of embryos at stage 15 (A, A′) or stage 16 (B–G′) labeled with phalloidin (green) and Dg (red), of the following genotypes: wild type (A, A′, B, B′), <i>slit</i> mutant (C, C′), <i>mp</i> mutant (D, D′), embryos overexpressing Mp (<i>mef2-GAL4>UAS-mp</i>, E, E′), embryos overexpressing Robo (<i>mef-2-GAL4>UAS-robo</i>, F, F′) or <i>slit</i> mutant embryos overexpressing Mp (G, G′). White arrows indicate the luminal membrane, while the luminal membrane of stage 16 wild type and Mp overexpressing embryos displays reduced F-actin levels, the luminal membrane of <i>slit</i> and <i>mp</i> mutant exhibits elevated F-actin levels. Note that overexpression of Mp in <i>slit</i> mutant background did not reduce F-actin levels at the luminal membrane although a small lumen was detected. The scheme in H summarizes the results; in wild type (WT) heart a constitutive activation of Slit/Robo at the luminal membrane, promoted by Mp reduces F-actin levels at the luminal membrane. In <i>mp</i> mutants Slit/Robo signaling is reduced, and consequently F-actin levels are elevated leading to a small lumen. In contrast, overexpression of Mp (Mp OE) leads to elevated Slit/Robo signaling, reducing luminal F-actin levels and enhancing lumen size. Mp overexpression in the absence of Slit exhibited elevated levels of luminal F-actin and a small lumen. Bar in A is 5 µm and represents magnification of all panels.</p

    Multiplexin Promotes Heart but Not Aorta Morphogenesis by Polarized Enhancement of Slit/Robo Activity at the Heart Lumen

    Get PDF
    <div><p>The <i>Drosophila</i> heart tube represents a structure that similarly to vertebrates' primary heart tube exhibits a large lumen; the mechanisms promoting heart tube morphology in both <i>Drosophila</i> and vertebrates are poorly understood. We identified Multiplexin (Mp), the <i>Drosophila</i> orthologue of mammalian Collagen-XV/XVIII, and the only structural heart-specific protein described so far in <i>Drosophila</i>, as necessary and sufficient for shaping the heart tube lumen, but not that of the aorta. Mp is expressed specifically at the stage of heart tube closure, in a polarized fashion, uniquely along the cardioblasts luminal membrane, and its absence results in an extremely small heart tube lumen. Importantly, Mp forms a protein complex with Slit, and interacts genetically with both <i>slit</i> and <i>robo</i> in the formation of the heart tube. Overexpression of Mp in cardioblasts promotes a large heart lumen in a Slit-dependent manner. Moreover, Mp alters Slit distribution, and promotes the formation of multiple Slit endocytic vesicles, similarly to the effect of overexpression of Robo in these cells. Our data are consistent with Mp-dependent enhancement of Slit/Robo activity and signaling, presumably by affecting Slit protein stabilization, specifically at the lumen side of the heart tube. This activity results with a Slit-dependent, local reduction of F-actin levels at the heart luminal membrane, necessary for forming the large heart tube lumen. Consequently, lack of Mp results in decreased diastolic capacity, leading to reduced heart contractility, as measured in live fly hearts. In summary, these findings show that the polarized localization of Mp controls the direction, timing, and presumably the extent of Slit/Robo activity and signaling at the luminal membrane of the heart cardioblasts. This regulation is essential for the morphogenetic changes that sculpt the heart tube in <i>Drosophila</i>, and possibly in forming the vertebrates primary heart tube.</p></div

    Genetic and physical association between Mp, Slit and Robo.

    No full text
    <p>Cardiac cross sections of wild type (A), <i>slit/+;mp/+</i> (B), <i>robo/+;mp/+</i> (C) double heterozygous, and <i>mp/+</i> (D), <i>slit/+</i> (E), <i>robo/+</i> (F) single heterozygous labeled with anti HOW (green), and anti Dg (red). The cardiac lumens (marked by arrowheads) of the double-heterozygous mutant are smaller relative to the control. G-I: cardiac cross sections of wild type embryos labeled with anti Slit (G,I red) and anti Mp (H,I green), indicating their co-localization along the lumen. J- immunoprecipitation with anti Slit antibodies (or with a control normal mouse serum) of an extract of S2 cells co-transfected with Slit, Robo, and Mp. The same blot was then reacted individually with anti- Slit, Mp, and Robo corresponding to the three upper lanes). The anti Mp antibody reacted with a single band of ∼120 kDa, corresponding to mp cDNA 3hnc1. This immunoprecipitation (IP) is representative of three independent IP experiments. The crude extracts contained comparable amounts of transfected proteins as indicated by the antibody reactivity with each of the transfected cDNA constructs presented in the right panel. K-Immunoprecipitation with anti Slit antibodies of comparable protein extracts taken from stage 16 control (yw), <i>mp<sup>−/−</sup></i>, or embryos overexpressing Mp in heart and muscles (using <i>mef2-GAL4</i> driver). Western blot with anti Slit of the IP material shows elevated levels of Slit in the Mp-overexpressing embryos and reduced Slit levels in <i>mp</i> mutants. Reaction of the same blot with anti Mp antibodies (lower panel) revealed a specific band of ∼39 kDa, corresponding to the Endostatin fragment. Western blot with anti Tropomyosin of the embryo protein extracts before taken to the IP with Slit, is shown in the lower panel, indicating comparable protein levels in each of the samples.</p

    Mp enhances Slit/Robo activity in the heart lumen and modulates Slit distribution in the central nervous system.

    No full text
    <p>Cross sections through the heart (A–F′″) or the aorta (G–H′) of wild type embryos (A, A′, G, G′); <i>robo</i> mutant (B, B′), embryos overexpressing Robo in cardioblasts (C, C′); <i>mp</i> mutant (D, D′), or embryos overexpressing Mp in cardioblasts (E, E′, H, H′) labeled with anti Slit (red) and anti Dg (green). F–F′″ show embryos expressing dominant-negative Rab5-YFP in cardioblasts labeled with Slit (F, red), YFP (F′, green), Slit and YFP (F″), or Slit and Dg (white, F′″). Panels A–H′ are single optical confocal sections to enable comparison of the extent of cytoplasmic Slit vesicles in each genotype. Insets are 2.5 folds enlargement of the heart luminal domain. White arrows in each inset, indicate Slit vesicle/s, with the exception of E′″ where the white arrow indicates Slit vesicle position. Note the reduction in the number and size of Slit endocytic vesicles observed in both <i>mp</i> and robo mutants, and their elevation following Mp and Robo overexpression. Represented schemes of Slit vesicles distribution are indicated for each genotype. Note the alteration in Slit distribution following Rab5 dominant negative overexpression (the majority of the protein overlaps Dg at the luminal membrane, and the cytoplasmic Slit is associated with the luminal membrane). I and I′ show wild type (I), or embryo overexpressing Mp in the midline using <i>sim-GAL4</i> driver (I′), both labeled for Fasciclin II (red). Note the shortening of the distance between the longitudinal commissures and the midline (marked by the white arrow), following overexpression of Mp. Cross sections through the ventral nerve cord of wild type (J,J′) or an embryo overexpressing Mp in the midline cells (K,K′) labeled with anti Slit (red) and with anti HOW (which marks the midline glia, green J′,K′). High Slit accumulation in the midline (marked by white arrowheads) is observed following overexpression of Mp. Bar in A is 5 µm and represents the magnification in panels A–H′. Bar in I is 20 µm, and represents magnification in I,I′. Bar in J is 10 µm and represents magnification in J–K′).</p

    Epistatic interactions may account for the systolic diameter phenotype.

    No full text
    <p>RIL 64, 85 and 187 (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0062909#pone.0062909.s006" target="_blank">Table S3</a>) each have an extreme narrow diameter similar to the parent WE70 line, whereas RIL 147, 148 and 144 (indicated by bold) have wildtype-like diameters. Each was crossed to either the second (WE70-2, light gray) or third (WE70-3, dark gray) chromosome WE70 substitution lines. Progeny from all the crosses show intermediate to wildtype heart diameters. Significant pair-wise comparisons are indicated (*p<0.05, **p<0.01, ***p<0.001). All other comparisons relative to <i>yw</i> (white bar) were not significant. WE70 parental line, black bar on the right, is also shown for comparison. 12–30 flies of each line were analyzed.</p

    Mutant PolyQ causes myofibrillar and mitochondrial ultrastructural defects in the fly heart.

    No full text
    <p>(A, A') Electron micrograph of a cross section through the dorsal vessel of 4-week old PolyQ-25 controls reveals a layer of contractile myocardial cells which form the heart tube and a non-contractile supporting layer of ventral-longitudinal fibers (VL). Note that myofibrils (MF) are intact and mitochondria (MT) contain densely packed cristae. (B, B') In contrast, the myocardial layer of 4-week old PolyQ-46 hearts contains gaps indicating some myofibrillar degeneration (arrow) and severely fragmented mitochondria (asterisks). Bars, 500 nm.</p

    Complex Genetic Architecture of Cardiac Disease in a Wild Type Inbred Strain of <i>Drosophila melanogaster</i>

    Get PDF
    <div><p>Natural populations of the fruit fly, <i>Drosophila melanogaster</i>, segregate genetic variation that leads to cardiac disease phenotypes. One nearly isogenic line from a North Carolina peach orchard, WE70, is shown to harbor two genetically distinct heart phenotypes: elevated incidence of arrhythmias, and a dramatically constricted heart diameter in both diastole and systole, with resemblance to restrictive cardiomyopathy in humans. Assuming the source to be rare variants of large effect, we performed Bulked Segregant Analysis using genomic DNA hybridization to Affymetrix chips to detect single feature polymorphisms, but found that the mutant phenotypes are more likely to have a polygenic basis. Further mapping efforts revealed a complex architecture wherein the constricted cardiomyopathy phenotype was observed in individual whole chromosome substitution lines, implying that variants on both major autosomes are sufficient to produce the phenotype. A panel of 170 Recombinant Inbred Lines (RIL) was generated, and a small subset of mutant lines selected, but these each complemented both whole chromosome substitutions, implying a non-additive (epistatic) contribution to the “disease” phenotype. Low coverage whole genome sequencing was also used to attempt to map chromosomal regions contributing to both the cardiomyopathy and arrhythmia, but a polygenic architecture had to be again inferred to be most likely. These results show that an apparently simple rare phenotype can have a complex genetic basis that would be refractory to mapping by deep sequencing in pedigrees. We present this as a cautionary tale regarding assumptions related to attempts to map new disease mutations on the assumption that probands carry a single causal mutation.</p></div

    Chromosome substitution regenerates the dilated cardiomyopathy phenotype.

    No full text
    <p>SD for wildtype <i>yw</i> is ∼38 µm. Either chromosome substitution alone (WE70-2, WE70-3) also has an average systolic diameter of ∼20 µm, which is not significantly different from the WE70 phenotype. The number of hearts examined is indicated in parenthesis, and whiskers show one standard deviation unit. Significant pair-wise comparisons are indicated (*p<0.05, **p<0.01, ***p<0.001, otherwise p>0.05 not indicated).</p
    corecore