5 research outputs found

    Independent Data Validation of an in Vitro Method for the Prediction of the Relative Bioavailability of Arsenic in Contaminated Soils

    No full text
    In vitro bioaccessibility (IVBA) assays estimate arsenic (As) relative bioavailability (RBA) in contaminated soils to improve accuracy in human exposure assessments. Previous studies correlating soil As IVBA with RBA have been limited by the use of few soil types and sources of As, and the predictive value of As IVBA has not been validated using an independent set of As-contaminated soils. In this study, a robust linear model was developed to predict As RBA in mice using IVBA, and the predictive capability of the model was independently validated using a unique set of As-contaminated soils. Forty As-contaminated soils varying in soil type and contaminant source were included in this study, with 31 soils used for initial model development and nine soils used for independent model validation. The initial model reliably predicted As RBA values in the independent data set, with a mean As RBA prediction error of 5.4%. Following validation, 40 soils were used for final model development, resulting in a linear model with the equation RBA = 0.65 × IVBA + 7.8 and an <i>R</i><sup>2</sup> of 0.81. The in vivo–in vitro correlation and independent data validation presented provide critical verification necessary for regulatory acceptance in human health risk assessment

    Relationship Between Total and Bioaccessible Lead on Children’s Blood Lead Levels in Urban Residential Philadelphia Soils

    No full text
    Relationships between total soil or bioaccessible lead (Pb), measured using an in vitro bioaccessibility assay, and children’s blood lead levels (BLL) were investigated in an urban neighborhood in Philadelphia, PA, with a history of soil Pb contamination. Soil samples from 38 homes were analyzed to determine whether accounting for the bioaccessible Pb fraction improves statistical relationships with children’s BLLs. Total soil Pb concentration ranged from 58 to 2821 mg/kg; the bioaccessible Pb concentration ranged from 47 to 2567 mg/kg. Children’s BLLs ranged from 0.3 to 9.8 μg/dL. Hierarchical models were used to compare relationships between total or bioaccessible Pb in soil and children’s BLLs. Total soil Pb concentration as the predictor accounted for 23% of the variability in child BLL; bioaccessible soil Pb concentration as the predictor accounted for 26% of BLL variability. A bootstrapping analysis confirmed a significant increase in <i>R</i><sup>2</sup> for the model using bioaccessible soil Pb concentration as the predictor with 99.0% of bootstraps showing a positive increase. Estimated increases of 1.3 μg/dL and 1.5 μg/dL in BLL per 1000 mg/kg Pb in soil were observed for this study area using total and bioaccessible Pb concentrations, respectively. Children’s age did not contribute significantly to the prediction of BLLs

    Relating soil geochemical properties to arsenic bioaccessibility through hierarchical modeling

    No full text
    <p>Interest in improved understanding of relationships among soil properties and arsenic (As) bioaccessibility has motivated the use of regression models for As bioaccessibility prediction. However, limits in the numbers and types of soils included in previous studies restrict the usefulness of these models beyond the range of soil conditions evaluated, as evidenced by reduced predictive performance when applied to new data. In response, hierarchical models that consider variability in relationships among soil properties and As bioaccessibility across geographic locations and contaminant sources were developed to predict As bioaccessibility in 139 soils on both a mass fraction (mg/kg) and % basis. The hierarchical approach improved the estimation of As bioaccessibility in studied soils. In addition, the number of soil elements identified as statistically significant explanatory variables increased when compared to previous investigations. Specifically, total soil Fe, P, Ca, Co, and V were significant explanatory variables in both models, while total As, Cd, Cu, Ni, and Zn were also significant in the mass fraction model and Mg was significant in the % model. This developed hierarchical approach provides a novel tool to (1) explore relationships between soil properties and As bioaccessibility across a broad range of soil types and As contaminant sources encountered in the environment and (2) identify areas of future mechanistic research to better understand the complexity of interactions between soil properties and As bioaccessibility.</p

    Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility

    No full text
    <p>Several investigations have been conducted to develop in vitro bioaccessibility (IVBA) assays that reliably predict in vivo oral relative bioavailability (RBA) of arsenic (As). This study describes a meta-regression model relating soil As RBA and IVBA that is based upon data combined from previous investigations that examined the relationship between As IVBA and RBA when IVBA was determined using an extraction of soil in 0.4 <i>M</i> glycine at pH 1.5. Data used to develop the model included paired IVBA and RBA estimates for 83 soils from various types of sites such as mining, smelting, and pesticide or herbicide application. The following linear regression model accounted for 87% of the observed variance in RBA (<i>R</i><sup>2</sup> = .87): RBA(%) = 0.79 Ă— IVBA(%) + 3.0. This regression model is more robust than previously reported models because it includes a larger number of soil samples, and also accounts for variability in RBA and IVBA measurements made on samples collected from sites contaminated with different As sources and conducted in different labs that have utilized different experimental models for estimating RBA.</p

    American Healthy Homes Survey: A National Study of Residential Pesticides Measured from Floor Wipes

    No full text
    The U.S. Department of Housing and Urban Development in collaboration with the United States Environmental Protection Agency conducted a survey measuring lead, allergens, and insecticides in a randomly selected nationally representative sample of residential homes. Multistage sampling with clustering was used to select the 1131 homes of which a subset of 500 randomly selected homes included the collection of hard surface floor wipes. Samples were collected by trained field technicians between June 2005 and March 2006 using isopropanol wetted wipes. Samples were analyzed for a suite of 24 compounds which included insecticides in the organochlorine, organophosphate, pyrethroid and phenylpyrazole classes, and the insecticide synergist piperonyl butoxide. The most commonly detected were permethrin (89%), chlorpyrifos (78%), chlordane (64%), piperonyl butoxide (52%), cypermethrin (46%), and fipronil (40%). Mean and geometric mean (GM) concentrations varied widely among compounds, but were highest for <i>trans</i>-permethrin (mean 2.22 ng/cm<sup>2</sup> and GM 0.14 ng/cm<sup>2</sup>) and cypermethrin (mean 2.9 ng/cm<sup>2</sup> and GM 0.03 ng/cm<sup>2</sup>). Results show that most floors in occupied homes in the U.S. have measurable levels of insecticides that may serve as sources of exposure to occupants
    corecore