570 research outputs found
Multislice/multidetector-row computed tomography findings of a rare coronary anomaly: the first septal perforator branch originating from the left main coronary artery
Multislice/multidetector-row computed tomography (MDCT) is now widely used for noninvasive assessment of coronary arteries, and it may sometimes reveal coronary anomalies. Detection of such anomalies may be relevant both during follow-up and for planning cardiac or coronary surgical/interventional procedures. These anomalies may be missed unless carefully sought. In this paper, we present the MDCT images of a first septal perforator branch originating from the left main coronary artery, which represents an extremely rare coronary anomaly. To the bestof our knowledge, this is the first case in the literature where MDCT images are presented
Review of Linac-Ring Type Collider Proposals
There are three possibly types of particle colliders schemes: familiar (well
known) ring-ring colliders, less familiar however sufficiently advanced linear
colliders and less familiar and less advanced linac-ring type colliders. The
aim of this paper is two-fold: to present possibly complete list of papers on
linac-ring type collider proposals and to emphasize the role of linac-ring type
machines for future HEP research.Comment: quality of figures is improved, some misprints are correcte
Project PROMETHEUS: Design and Construction of a Radio Frequency Quadrupole at TAEK
The PROMETHEUS Project is ongoing for the design and development of a 4-vane
radio frequency quadrupole (RFQ) together with its H+ ion source, a low energy
beam transport (LEBT) line and diagnostics section. The main goal of the
project is to achieve the acceleration of the low energy ions up to 1.5 MeV by
an RFQ (352 MHz) shorter than 2 meter. A plasma ion source is being developed
to produce a 20 keV, 1 mA H+ beam. Simulation results for ion source,
transmission and beam dynamics are presented together with analytical studies
performed with newly developed RFQ design code DEMIRCI. Simulation results
shows that a beam transmission 99% could be achieved at 1.7 m downstream
reaching an energy of 1.5 MeV. As the first phase an Aluminum RFQ prototype,
the so-called cold model, will be built for low power RF characterization. In
this contribution the status of the project, design considerations, simulation
results, the various diagnostics techniques and RFQ manufacturing issues are
discussed.Comment: 4 pages, 8 figures, Proceedings of the 2nd International Beam
Instrumentation Conference 2013 (IBIC'13), 16-19 Sep 2013, WEPC02, p. 65
Graphene oxide integrated sensor for electrochemical monitoring ofmitomycin C–DNA interaction
WOS: 000302308600025PubMed ID: 22439135We present a graphene oxide (GO) integrated disposable electrochemical sensor for the enhanced detection of nucleic acids and the sensitive monitoring of the surface-confined interactions between the anticancer drug mitomycin C (MC) and DNA. Interfacial interactions between immobilized calf thymus double-stranded (dsDNA) and anticancer drug MC were investigated using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. Based on three repetitive voltammetric measurements of 120 mu g mL(-1) DNA immobilized on GO-modified electrodes, the RSD % (n = 3) was calculated as 10.47% and the detection limit (DL) for dsDNA was found to be 9.06 mu g mL(-1). EIS studies revealed that the binding of the drug MC to dsDNA leads to a gradual decrease of its negative charge. As a consequence of this interaction, the negative redox species were allowed to approach the electrode, and thus increase the charge transfer kinetics. On the other hand, DPV studies exploited the decrease of the guanine signal due to drug binding as the basis for specifically probing the biointeraction process between MC and dsDNA.Royal Society through Joint Project Scheme [1212R0168]; Turkish Academy of Sciences (TUBA)Turkish Academy of SciencesThis work was supported by the Royal Society through Joint Project Scheme (Project No. 1212R0168). A.E. acknowledges the Turkish Academy of Sciences (TUBA) as an Associate member for its partial support. Authors would like to thank Dr. M. McMullan for the assistance on the synthesis of graphene oxide
Improved Thermodynamic Descriptions of Carbides in Ni-Based Superalloys
The Ni-based superalloy René 41 has sparked recent interest for applications in next-generation aircraft engines due to its high-temperature strength that is superior to all similar grades. These desirable properties are achieved by careful control of the microstructure evolution during thermomechanical processing, and this is commonly informed by simulations. In particular, the grain boundary carbides M6C and M23C6 play an essential role in controlling the grain size and strength of the final product. Therefore, a solid understanding of the thermodynamic stability and thermokinetic evolution of these carbides is essential. However, thermokinetic simulations using existing thermodynamic databases have been demonstrated to have discrepancies between thermodynamic stabilities and experimental observations. Here, we collected a new experimental time–temperature–precipitation diagram. In conjunction with improved crystallographic descriptions, these experimental results are used to modify a CALPHAD database for M6C and M23C6. The modified database correctly identifies temperature regions with rapid carbide precipitation kinetics. Further, kinetic simulations and strengthening models successfully predict the hardness increase due to γ′ precipitation. The modified database has been applied to Udimet 700, Waspaloy, and Haynes 282, demonstrating improved results. These updates will facilitate more accurate simulations of the microstructure evolution during thermomechanical processing of advanced Ni-based superalloys for aerospace and other applications
- …