44 research outputs found

    Phenomenon of Cloning and specificity of its usage

    Get PDF
    Cloning is studied by different branches of science. Medicine is interested in cloning because of its ability to transplant special tissues and organs, genetics - with the purpose of studying heredity and succession, sociology deals with moral and ethic aspects of the phenomenon. The paper is devoted to the study of cloning, its special features and usage in different spheres of social life. The article represents main types of cloning, specificity of vegetative and animal cloning and problems of its expansion. The paper also demonstrates the actual topic of nowadays studies connected with human cloning and its aftereffects for science and society. The article may be useful for a wide audience and for people, who are interested in studies of cloning and problems of its realization

    Measurement of the magnetic moment of the one-neutron halo nucleus 11^{11}Be

    Get PDF
    The magnetic moment of 11^{11}Be was measured by detecting nuclear magnetic resonance signals in a beryllium crystal lattice. The experimental technique applied to a 11^{11}Be+^+ ion beam from a laser ion source includes in-beam optical polarization, implantation into a metallic single crystal and observation of rf resonances in the asymmetric angular distribution of the β\beta-decay (β\beta-NMR). The nuclear magnetic moment μ(11Be)=1.6816(8)μN\mu(^{11}{\rm Be}) = -1.6816(8)\,\mu_N provides a stringent test for theoretical models describing the structure of the 1/2+^+ neutron halo state

    Classical Evolution of Quantum Elliptic States

    Get PDF
    The hydrogen atom in weak external fields is a very accurate model for the multiphoton excitation of ultrastable high angular momentum Rydberg states, a process which classical mechanics describes with astonishing precision. In this paper we show that the simplest treatment of the intramanifold dynamics of a hydrogenic electron in external fields is based on the elliptic states of the hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical symmetry group of the Kepler problem. Moreover, we also show that classical perturbation theory yields the {\it exact} evolution in time of these quantum states, and so we explain the surprising match between purely classical perturbative calculations and experiments. Finally, as a first application, we propose a fast method for the excitation of circular states; these are ultrastable hydrogenic eigenstates which have maximum total angular momentum and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.

    Recent results on neutron rich tin isotopes by laser spectroscopy

    Get PDF
    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on 134^{134}Sn are presented
    corecore