14 research outputs found

    Die Regulation und Funktion des Transkriptionsfaktors c-Jun im malignen Melanom

    Get PDF
    Das maligne Melanom ist ein vom melanozytĂ€ren Zellsystem ausgehender bösartiger Tumor, der sich ĂŒberwiegend in der Haut manifestiert. Im VerhĂ€ltnis zur Tumormasse liegt eine frĂŒhe Tendenz zur Metastasierung und folglich eine ungĂŒnstige Prognose vor. Demnach besteht eine große Notwendigkeit, die molekularen Mechanismen der Entstehung und Progression des Melanoms aufzuklĂ€ren, um zukĂŒnftig bessere Behandlungsstrategien zu entwickeln. Die Melanomentstehung und –progression ist charakterisiert durch die Entartung von Melanozyten durch verschiedene Gendefekte, de-regulierte Signalwege und Transkriptionsfaktoren. Dabei erwerben die Zellen bestimmte Eigenschaften, die sie folglich als Tumorzellen auszeichnen: erhöhte Proliferationsrate, Verlust von Tumor- Suppressoren, Erwerb invasiver und metastasierender Eigenschaften, replikative ImmortalitĂ€t und vermehrte Angiogenese und Apoptose- Resistenz. An diesem Prozess der Tumorentwicklung spielen verschiedene MolekĂŒle eine entscheidende Rolle. In diesem Zusammenhang stehen Signalwege und Transkriptionsfaktoren im Fokus meiner Analysen. Transkriptionsfaktoren regulieren die Genexpression auf transkriptioneller Ebene. Durch die Fehlregulation von Transkriptionsfaktoren erfolgt eine De-Regulation mehrerer spezifischer Zielgene, was gravierende funktionelle VerĂ€nderungen nach sich ziehen kann. Anormale TranskriptionsaktivitĂ€t und die damit verbundene verĂ€nderte Genexpression kann somit unter UmstĂ€nden zu einem malignen Zelltyp fĂŒhren. Die AP-1-Transkriptionsfaktorfamilie konnten als eine der wichtigsten bezĂŒglich des malignen Melanoms identifiziert werden und setzt sich aus verschiedenen Subfamilien zusammen. (z.B. Jun und Fos). Die Jun Subfamilie besteht aus den Mitgliedern c-Jun, JunB und JunD, zur Fos Subfamilie zĂ€hlen c-Fos, FosB, Fra-1 und Fra-2. Die AP-1 AktivitĂ€t spielt im Rahmen der Tumorgenese eine essentielle Rolle. AP-1 Mitglieder besitzen eine basic leucin zipper DomĂ€ne (bZIP), eine DNA-BindedomĂ€ne und eine TransaktivierungsdomĂ€ne. AP-1 Transkriptionsfaktoren können nur als Homo- oder Heterodimere aktiv werden. Im Rahmen dieser Arbeit stand das AP-1 Mitglied c-Jun und dessen Regulation und Funktion im malignen Melanom im Fokus der Analysen Die Regulation von c-Jun erfolgt zum einen posttranskriptionell durch zahlreiche physiologische und pathologische Stimuli. Dabei kann es sich um Zytokine, Wachstumsfaktoren, Stress- Signale oder onkogene Stimuli handeln. Des Weiteren ist c-Jun das wichtigste Substrat des JNK (Jun-N-terminal Kinase) Signalweges und auch konstitutiv aktives ERK fĂŒhrt zu einer Stabilisierung von c-Jun im Melanom. Das Zell-ZelladhĂ€sionsmolekĂŒl E-Cadherin ist ein weiterer wichtiger Regulator von c-Jun und spielt bei der Interaktion von Keratinozyten- Keratinozyten oder Keratinozyten- Melanozyten eine Rolle. Durch den Verlust von E-Cadherin kommt es zur epithelial-mesenchymalen Transition (EMT), wodurch die Zellen migratorisches Potential erlangen und die Basalmembran passieren können. Folglich kommt es zum unkontrollierten Melanozytenwachstum, welches wiederum zur Tumorentstehung fĂŒhrt. Unsere Arbeitsgruppe konnte bereits zeigen, dass der Transkriptionsfaktor c-Jun durch den Verlust von E-Cadherin auf Proteinebene stabilisiert wird. Die Ergebnisse dieser Dissertation zeigen, dass im malignen Melanom neben den bekannten Signalwegen JNK und ERK auch ein alternativer, E-Cadherin abhĂ€ngiger Signalweg existiert. Dieser Signalweg fĂŒhrt ĂŒber die Aktivierung des Transkriptionsfaktors ETS-1 zur Expression der GTPase RhoC, welche wiederum die Expression und Aktivierung des Transkriptionsfaktors c-Jun steuert. Zudem konnte die regulatorische Funktion der Mikrotubuli auf den Transkriptionsfaktor c-Jun aufgeklĂ€rt werden. DiesbezĂŒglich zeigte sich eine Interaktion zwischen c-Jun und monomerem α-Tubulin, welche den Transkriptionsfaktor c-Jun stabilisiert. Diese Stabilisierung von c-Jun hat eine Steigerung der AP-1 AktivitĂ€t, AP-1-DNA BindungsaktivitĂ€t und c-Jun Akkumulation im Kern zur Folge. DarĂŒberhinaus konnte Importin 13 als Mediator des c-Jun Kernimports im malignen Melanom identifiziert werden, welches ebenfalls eine Interaktion mit c-Jun und α-Tubulin aufweist. Weitere Analysen bestĂ€tigten, dass diese detektierte Interaktion zwischen c-Jun/α-Tubulin/Importin 13 von allen drei Faktoren und der Nuclear Localization Sequence (NLS) von c-Jun abhĂ€ngig ist. Durch weitere Analysen konnte eine miRNA identifiziert werden, die miR-125b, welche den Transkriptionsfactor c-Jun und damit die AP-1 AktivitĂ€t im Melanom durch direkte Bindung in der kodierenden Region der c-Jun mRNA posttranskriptionell reguliert. Die miR-125b und c-Jun Expression korrelieren im malignen Melanom invers. Nach miR-125b Re-Expression in Melanomzellen konnte eine Verringerung des proliferativen und migratorischen Potentials detektiert werden. Demnach konnten im Rahmen dieser Promotionsarbeit verschiedene molekulare Mechanismen der c-Jun Regulation im malignen Melanom detektiert und aufgeklĂ€rt werden

    Virus-like particles of Pseudoalteromonas marina and their possible medical significance

    Get PDF
    Virus- like- particles (VLPs) sind Membranvesikel welche von einigen marinen Bakterien spontan wĂ€hrend des bakteriellen Wachstums abgegeben werden. In dieser Arbeit wurde die VLP- Produktion des Bakteriums Pseudoalteromonas marina mit besonderem Augenmerk auf den Beginn der Partikelproduktion, die Morphologie der Partikel sowie die beinhaltende DNA und ihre FunktionalitĂ€t untersucht. Zur Verifizierung des Bakteriums Pseudoalteromonas marina wurde die Polymerasekettenreaktion basierend auf der 16S rRNA durchgefĂŒhrt. Der aktuelle Wissensstand bezĂŒglich der VLPs ist, dass sie in den meisten FĂ€llen von noch nichtidentifizierten marinen Bakterien produziert werden und eine hochmolekulare DNA (20- 500 kb) beinhalten. Demnach wurde die VLP- DNA aus den Partikeln extrahiert und sequenziert, um herauszufinden ob diese bakteriellen oder viralen Ursprungs ist. Zu diesem Zwecke wurde das Bakterium Pseudoalteromonas marina kultiviert, um dann aus verschiedenen Wachstumsstadien VLPs durch Filtration und Ultrazentrifugation zu isolieren. Insgesamt wurden drei verschiedene DNA Extraktionen durchgefĂŒhrt: bakterielle genomische DNA, um durch PCR die Spezies Pseudoalteromonas marina zu verifizieren, VLP- DNA zum Zwecke weiterer Analysen und Plasmid- DNA, um die klonierten VLP- DNA Fragmente zu sequenzieren. Die hoch molekulare VLP- DNA wurde fĂŒr die Klonierung und Herstellung einer Shotgun- library mechanisch fragmentiert. Ebenfalls notwendig fĂŒr eine erfolgreiche Klonierung war das Erzeugen von Blunt- ends der fragmentierten VLP- DNA. Die VLP- DNA wurde anschießend durch Agarose- Gelelektrophorese der GrĂ¶ĂŸe nach fraktioniert und gereinigt. Im Anschluss wurden die entsprechenden GelstĂŒcke eluiert, die eluierte DNA in einen entsprechenden Vektor (pSMART HCKan) ligiert und in kompetente „E. cloni Zellen“ transformiert. Die Sequenzdaten wurden computergestĂŒtzt analysiert. Basierend auf dem Wissen, dass einige marine Bakterien inhibitorisch auf andere Bakterien wirken und somit eine wichtige Funktion in marinen Ökosystemen haben, wurde das Bakterium Pseudoalteromonas marina und die von ihm produzierten VLPs auf eine mögliche antibakterielle AktivitĂ€t hin untersucht. Zu diesem Zwecke wurde ein disc- diffussion- assay durchgefĂŒhrt. Als Produzent von antibakteriell wirkenden Substanzen 101 wĂŒrde dieser Spezies eine hohe medizinische Relevanz zugesprochen werden, insbesondere unter BerĂŒcksichtigung der stĂ€ndig ansteigenden DiversitĂ€t Antibiotika resistenter Bakterien. Aufgrund dieses schnellen Anstiegs innerhalb des letzten Jahrzehntes ist es von Ă€ußester Dringlichkeit neue antimikrobiell wirkende Substanzen zu entdecken.Virus- like- particles (VLPs) are membrane vesicles derived from some marine bacteria. They are spontaneously released from specific bacteria during growth. In this study the production of VLPs of Pseudoalteromonas marina was investigated with special focus on the time when particle production starts, the morphology of the particles, their DNA and its functionality. PCR was used for the verification that the cultivated species under investigation is Pseudoalteromonas marina. For such purpose 16S rRNA sequences were used. The actual state of knowledge is that VLPs were generated by -for the most part - unidentified marine bacterial strains, that they contain a large linear DNA molecule (20- 500 kb). Hence, the DNA of those particles was extracted and sequenced to determine the source of the particle DNA (bacterial or viral). Therefore the bacterium Pseudoalteromonas marina was cultivated and the VLPs were isolated by filtration and ultracentrifugation at different bacterial culture ages. Collectively three DNA-fractions had to be extracted: bacterial genomic DNA was isolated to get a PCR-target for the verification of the species (Pseudoalteromonas marina), DNA out of the VLPs was extracted for further analyses and plasmid DNA in order to sequence the cloned VLP-fragments. To prepare VLP–DNA suitable for cloning in order to construct a shot-gun-library the original high molecular weight DNA was mechanically fragmented. Blunt-ends were created necessary for cloning the DNA. The “repaired” DNA was size fractionated and cleaned by agarose gel electrophoresis and eluted from the gel pieces. The achieved, eluted DNA was ligated in an appropriate plasmid vector (pSMART HCKan); for transformation the purchased competent “E.cloni cells” were used. Sequence data were analysed computer- based. Based on the knowledge of recent studies that some marine bacteria are inhibitory to other bacteria, thus playing an important role in marine ecology, the antibacterial activity of Pseudoalteromonas marina and derived particles was tested. Therefore a disc- diffusion assay was conducted. Additionally, as producers of antibacterial compounds they were thought to be of high medical relevance, especially considering the rapid increase and spread of antibiotic-resistant bacteria. Because of this rapid increase over the past decade, there is an urgent need to discover novel antimicrobial compounds

    Complex Formation with Monomeric α-Tubulin and Importin 13 Fosters c-Jun Protein Stability and Is Required for c-Jun’s Nuclear Translocation and Activity

    Get PDF
    Microtubules are highly dynamic structures, which consist of α- and ÎČ-tubulin heterodimers. They are essential for a number of cellular processes, including intracellular trafficking and mitosis. Tubulin-binding chemotherapeutics are used to treat different types of tumors, including malignant melanoma. The transcription factor c-Jun is a central driver of melanoma development and progression. Here, we identify the microtubule network as a main regulator of c-Jun activity. Monomeric α-tubulin fosters c-Jun protein stability by protein–protein interaction. In addition, this complex formation is necessary for c-Jun’s nuclear localization sequence binding to importin 13, and consequent nuclear import and activity of c-Jun. A reduction in monomeric α-tubulin levels by treatment with the chemotherapeutic paclitaxel resulted in a decline in the nuclear accumulation of c-Jun in melanoma cells in an experimental murine model and in patients’ tissues. These findings add important knowledge to the mechanism of the action of microtubule-targeting drugs and indicate the newly discovered regulation of c-Jun by the microtubule cytoskeleton as a novel therapeutic target for melanoma and potentially also other types of cancer

    C-Jun drives melanoma progression in PTEN wild type melanoma cells

    No full text
    Due to the critical impact of active AP-1 transcription factors in melanoma, it is important to define their target genes and to identify and ultimately inhibit oncogenic signals. Here we mapped the genome-wide occupancy of the AP-1 family member c-Jun in different melanoma cells and correlated AP-1 binding with transcriptome data to detect genes in melanoma regulated by c-Jun. Our analysis shows that c-Jun supports the malignant phenotype by deregulating genes in cancer-relevant signaling pathways, such as mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. Moreover, we demonstrate that the importance of c-Jun depends on melanoma stage and mutation status of the tumor suppressor PTEN. Our study reveals that activation of c-Jun overrules the tumor suppressive effect of PTEN in early melanoma development. These findings help to understand the relevance of c-Jun within cancer pathways in different melanoma cell types, especially in relation to MAPK and PI3K pathways, which are commonly deregulated in melanomas. Consequently, targeting c-Jun in PTEN+ melanoma cells may represent a promising therapeutic strategy to inhibit survival of melanoma cells to prevent the development of a metastatic phenotype

    Alternative Wnt-signaling axis leads to a break of oncogene-induced senescence

    No full text
    Abstract Oncogene-induced senescence (OIS) is an important process that suppresses tumor development, but the molecular mechanisms of OIS are still under investigation. It is known that BRAFV600E-mutated melanocytes can overcome OIS and develop melanoma, but the underlying mechanism is largely unknown. Using an established OIS model of primary melanocytes transduced with BRAFV600E, YAP activity was shown to be induced in OIS as well as in melanoma cells compared to that in normal epidermal melanocytes. This led to the assumption that YAP activation itself is not a factor involved in the disruption of OIS. However, its role and interaction partners potentially change. As Wnt molecules are known to be important in melanoma progression, these molecules were the focus of subsequent studies. Interestingly, activation of Wnt signaling using AMBMP resulted in a disruption of OIS in BRAFV600E-transduced melanocytes. Furthermore, depletion of Wnt6, Wnt10b or ÎČ-catenin expression in melanoma cells resulted in the induction of senescence. Given that melanoma cells do not exhibit canonical Wnt/ÎČ-catenin activity, alternative ÎČ-catenin signaling pathways may disrupt OIS. Here, we discovered that ÎČ-catenin is an interaction partner of YAP on DNA in melanoma cells. Furthermore, the ÎČ-catenin–YAP interaction changed the gene expression pattern from senescence-stabilizing genes to tumor-supportive genes. This switch is caused by transcriptional coactivation via the LEF1/TEAD interaction. The target genes with binding sites for LEF1 and TEAD are involved in rRNA processing and are associated with poor prognosis in melanoma patients. This study revealed that an alternative YAP-Wnt signaling axis is an essential molecular mechanism leading to OIS disruption in melanocytes

    Loss of miR-101-3p in melanoma stabilizes genomic integrity, leading to cell death prevention

    No full text
    Abstract Malignant melanoma remains the most lethal form of skin cancer, exhibiting poor prognosis after forming distant metastasis. Owing to their potential tumor-suppressive properties by regulating oncogenes and tumor suppressor genes, microRNAs are important player in melanoma development and progression. We defined the loss of miR-101-3p expression in melanoma cells compared with melanocytes and melanoblast-related cells as an early event in tumor development and aimed to understand the tumor suppressive role of miR-101-3p and its regulation of important cellular processes. Reexpression of miR-101-3p resulted in inhibition of proliferation, increase in DNA damage, and induction of apoptosis. We further determined the nuclear structure protein Lamin B1, which influences nuclear processes and heterochromatin structure, ATRX, CASP3, and PARP as an important direct target of miR-101-3p. RNA sequencing and differential gene expression analysis after miR-101-3p reexpression supported our findings and the importance of loss of mir-101-3p for melanoma progression. The validated functional effects are related to genomic instability, as recent studies suggest miRNAs plays a key role in mediating this cellular process. Therefore, we concluded that miR-101-3p reexpression increases the genomic instability, leading to irreversible DNA damage, which leads to apoptosis induction. Our findings suggest that the loss of miR-101-3p in melanoma serves as an early event in melanoma progression by influencing the genomic integrity to maintain the increased bioenergetic demand

    Loss of Gene Information: Discrepancies between RNA Sequencing, cDNA Microarray, and qRT-PCR

    No full text
    Molecular analyses of normal and diseased cells give insight into changes in gene expression and help in understanding the background of pathophysiological processes. Years after cDNA microarrays were established in research, RNA sequencing (RNA-seq) became a key method of quantitatively measuring the transcriptome. In this study, we compared the detection of genes by each of the transcriptome analysis methods: cDNA array, quantitative RT-PCR, and RNA-seq. As expected, we found differences in the gene expression profiles of the aforementioned techniques. Here, we present selected genes that exemplarily demonstrate the observed differences and calculations to reveal that a strong RNA secondary structure, as well as sample preparation, can affect RNA-seq. In summary, this study addresses an important issue with a strong impact on gene expression analysis in general. Therefore, we suggest that these findings need to be considered when dealing with data from transcriptome analyses

    Knockdown of Lamin B1 and the Corresponding Lamin B Receptor Leads to Changes in Heterochromatin State and Senescence Induction in Malignant Melanoma

    No full text
    Modifications in nuclear structures of cells are implicated in several diseases including cancer. They result in changes in nuclear activity, structural dynamics and cell signalling. However, the role of the nuclear lamina and related proteins in malignant melanoma is still unknown. Its molecular characterisation might lead to a deeper understanding and the development of new therapy approaches. In this study, we analysed the functional effects of dysregulated nuclear lamin B1 (LMNB1) and its nuclear receptor (LBR). According to their cellular localisation and function, we revealed that these genes are crucially involved in nuclear processes like chromatin organisation. RNA sequencing and differential gene expression analysis after knockdown of LMNB1 and LBR revealed their implication in important cellular processes driving ER stress leading to senescence and changes in chromatin state, which were also experimentally validated. We determined that melanoma cells need both molecules independently to prevent senescence. Hence, downregulation of both molecules in a BRAFV600E melanocytic senescence model as well as in etoposide-treated melanoma cells indicates both as potential senescence markers in melanoma. Our findings suggest that LMNB1 and LBR influence senescence and affect nuclear processes like chromatin condensation and thus are functionally relevant for melanoma progression

    Role of melanoma inhibitory activity in melanocyte senescence

    No full text
    The protein melanoma inhibitory activity (MIA) is known to be expressed in melanoma and to support melanoma progression. Interestingly, previous studies also observed the expression of MIA in nevi. Concentrating on these findings, we revealed that MIA expression is correlated with a senescent state in melanocytes. Induction of replicative or oncogene-induced senescence resulted in increased MIA expression in vitro. Notably, MIA knockdown in senescent melanocytes reduced the percentage of senescence-associated beta-Gal-positive cells and enhanced proliferation. Using the melanoma mouse model Tg(Grm1), MIA-deficient mice supported the impact of MIA on senescence by showing a significantly earlier tumor onset compared to controls. In melanocytes, MIA knockdown led to a downregulation of the cell cycle inhibitor p21 in vitro and in vivo. In contrast, after induction of hTERT in human melanoma cells, p21 regulation by MIA was lost. In summary, our data show for the first time that MIA is a regulator of cellular senescence in human and murine melanocytes
    corecore