5 research outputs found

    A geometric construction of traveling waves in a bioremediation.

    Get PDF
    Bioremediation is a promising technique for cleaning contaminated soil. We study an idealized bioremediation model involving a substrate (contaminant to be removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional soil column. Using geometric singular perturbation theory, we construct traveling waves (TW) corresponding to motion of a biologically active zone, in which the microorganisms consume both substrate and acceptor. For certain values of the parameters, the traveling waves exist on a three-dimensional slow manifold within the five-dimensional phase space. We prove persistence of the slow manifold under perturbation by controlling the nonlinearity via a change of coordinates, and we construct the wave in the transverse intersection of appropriate stable and unstable manifolds in this slow manifold. We study how the TW depends on the half saturation constants and other parameters and investigate numerically a bifurcation in which the TW loses stability to a periodic wav

    Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer-Meinhardt model

    Get PDF
    We use renormalization group (RG) techniques to prove the nonlinear asymptotic stability for the semi-strong regime of two-pulse interactions in a regularized Gierer-Meinhardt system. In the semi-strong limit the strongly localized activator pulses interact through the weakly localized inhibitor, the interaction is not tail-tail as in the weak interaction limit, and the pulses change amplitude and even stability as their separation distance evolves on algebraically slow time scales. The RG approach employed here validates the interaction laws of quasi-steady pulse patterns obtained formally in the literature, and establishes that the pulse dynamics reduce to a closed system of ordinary differential equations for the activator pulse locations. Moreover, we fully justify the reduction to the nonlocal eigenvalue problem (NLEP) showing the large difference between the quasi-steady NLEP operator and the operator arising from linearization about the pulse is controlled by the resolven

    Nonlinear asymptotic stability of the semi-strong pulse dynamics in a regularized Gierer-Meinhardt model

    No full text
    We use renormalization group (RG) techniques to prove the nonlinear asymptotic stability for the semi-strong regime of two-pulse interactions in a regularized Gierer-Meinhardt system. In the semi-strong limit the strongly localized activator pulses interact through the weakly localized inhibitor, the interaction is not tail-tail as in the weak interaction limit, and the pulses change amplitude and even stability as their separation distance evolves on algebraically slow time scales. The RG approach employed here validates the interaction laws of quasi-steady pulse patterns obtained formally in the literature, and establishes that the pulse dynamics reduce to a closed system of ordinary differential equations for the activator pulse locations. Moreover, we fully justify the reduction to the nonlocal eigenvalue problem (NLEP) showing the large difference between the quasi-steady NLEP operator and the operator arising from linearization about the pulse is controlled by the resolven

    A geometric construction of traveling waves in a bioremediation model

    No full text
    Bioremediation is a promising technique for cleaning contaminated soil. We study an idealized bioremediation model involving a substrate (contaminant to be removed), electron acceptor (added nutrient), and microorganisms in a one-dimensional soil column. Using geometric singular perturbation theory, we construct traveling waves (TW) corresponding to motion of a biologically active zone, in which the microorganisms consume both substrate and acceptor. For certain values of the parameters, the traveling waves exist on a three-dimensional slow manifold within the five-dimensional phase space. We prove persistence of the slow manifold under perturbation by controlling the nonlinearity via a change of coordinates, and we construct the wave in the transverse intersection of appropriate stable and unstable manifolds in this slow manifold. We study how the TW depends on the half saturation constants and other parameters and investigate numerically a bifurcation in which the TW loses stability to a periodic wave
    corecore