4 research outputs found

    Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment

    Get PDF
    The electrochemical mineralization of organic pollutants is a new technology for treatment of dilute wastewater (COD< 5gL−1). In this method, use of the electrical energy can produce complete oxidation of pollutants on high oxidation power anodes. An ideal anode for this type of treatment is a boron-doped diamond electrode (BDD) characterized by a high reactivity towards oxidation of organics. In the present work kinetic aspects of organic mineralization is discussed. The proposed theoretical kinetic model on boron-doped diamond anodes is in excellent agreement with experimental results. In addition economic aspects of electrochemical organic mineralization are reporte

    Electrochemical oxidation of ammonia (NH4+/NH3) on thermally and electrochemically prepared IrO2 electrodes

    No full text
    The electrochemical oxidation of ammonia (NH4+/NH3) in sodium perchlorate was investigated on IrO2 electrodes prepared by two techniques: the thermal decomposition of H2IrCl6 precursor and the anodic oxidation of metallic iridium. The electrochemical behaviour of Ir(IV)/Ir(111) surface redox couple differs between the electrodes indicating that on the anodic iridium oxide film (AIROF) both, the surface and the interior of the electrode are electrochemically active whereas on the thermally decomposed iridium oxide films (TDIROF), mainly the electrode surface participates in the electrochemical processes
    corecore