87 research outputs found

    Fire Regime in a Peatland Restoration Area: Lesson from Central Kalimantan

    Get PDF
    Peat fires have caused carbon emissions and damage to local and regional communities in Indonesia. An effective fire prevention system is required for mitigating climate change and enabling sustainable development of peatlands. This study examined the fire regime in a peatland restoration area in Central Kalimantan in order to assist the establishment of a fire prevention system. The fire regime was analysed using spatial-temporal analysis, land cover change mapping, and logistic regression analysis. Spatial-temporal analysis was done using monthly Niño 3.4 sea surface temperature anomalies, daily rainfall, and MODIS Active Fire (MCD14DL) hotspots from 2006 to 2015. Land cover change was mapped using Landsat imagery from2014, 2015 and 2016. Logistic regression analysis was conducted to identify significant factors that increase fire risk. The temporal analysis showed that the strongest El Niño occurred in 2015, when the region experienced a 140-days drought period. The highest number of hotspots was also observed in this year, with hotspots concentrated in the latter half of drought period. Moreover, spatial analysis using Kernel Density Estimation (KDE) showed fire recur in degraded areas. The logistic regression analysis used topographic and proximity factors, land cover classes, and soil types as independent variables. It showed that fire in 2014 and 2015 was associated with several land cover classes and was related to historical fire occurrence areas based on KDE results. Several area of peatland forests burned in 2015 and occurred at the forest edge areas located near cultivated or degraded land (e.g. shrubland) and oil palm plantations. Based on the results, the fire regime in the study area is characterized by fires that occurring/recurring in relation to climatic conditions, especially drought periods, and are typically located in cultivated or degraded land cover classes. These parameters should be considered in developing a fire prevention system in the restoration area.Rezim Kebakaran Hutan dan Lahan di Area Restorasi Lahan Gambut: Studi dari Kalimantan TengahIntisariKebakaran di lahan gambut menyebabkan emisi karbon dan kerusakan sistem kehidupan masyarakat lokal dan regional. Sistem pencegahan kebakaran yang efektif diperlukan untuk mitigasi perubahan iklim serta mendorong pembangunan lahan dan hutan yang lestari di kawasan gambut. Studi ini meneliti tentang rezim kebakaran hutan dan lahan di suatu kawasan restorasi gambut di Kalimantan Tengah. Rezim kebakaran hutan dan lahan dianalisis menggunakan analisis spasial-temporal, perubahan tutupan lahan, dan regresi logistik. Analisis spasial-temporal menggunakan parameter nilai rata-rata sea surface temperature (SST) bulanan, curah hujan harian, dan hotspot dari MODIS Active Fire (MCD14DL) tahun 2006-2016. Perubahan tutupan lahan dipetakan dengan analisis citra Landsat tahun 2014, 2015 dan 2016. Regresi logistik digunakan untuk menganalisis faktor yang berpengaruh pada peningkatan resiko kebakaran. Analisis temporal terhadap nilai SST tahun 2006-2016 menunjukkan bahwa El- Niño terparah terjadi di tahun 2015 yang memiliki hari tanpa hujan selama 140 hari berturut-turut dan ditemukan titik hotspot terbanyak. Kernel Density Estimation (KDE) digunakan dalam analisis spasial dan hasilnya menunjukkan bahwa kebakaran terjadi dan dapat berulang di area terdegradasi. Regresi logistik  menggunakan parameter yang terdiri faktor topografis, kedekatan dengan sungai/kanal, tipe penutupan lahan, serta jenis tanah. Hasil analisis menunjukkan bahwa kebarakan tahun 2014 dan 2015 berhubungan dengan beberapa tipe tutupan lahan di area yang secara historis pernah terbakar berdasarkan analisis KDE, sehingga area tersebut terindikasi telah terdegradasi sebelumnya. Beberapa area hutan di lahan gambut juga mengalami kebakaran pada tahun 2015 khususnya di area tepi hutannya. Berdasarkan hasil, rezim kebakaran di area studi dapat dijelaskan bahwa kebakaran terjadi dan dapat berulang karena pengaruh iklim

    Legacy effects of canopy gaps on liana abundance 25 years later in a seasonal tropical evergreen forest in northeastern Thailand

    Get PDF
    Lianas require host trees to reach and stay in the forest canopy, but as seedlings and juveniles, they benefit from canopy gaps created by treefalls. Here, we evaluated the relative importance of these two aspects, that is, the availability of potential hosts vs. the legacy effect of past treefall gaps, on the local abundance of liana stems in a seasonal tropical evergreen forest in the Sakaerat Biosphere Reserve in northeastern Thailand. Within a 2.5-ha plot for forest dynamics monitoring, canopy height was measured in 1993 and 2018 at 5-m intervals to distinguish areas of mature (canopy height ≥ 20 m), building (10–20 m), and gap phases (< 10 m). In 2017–2018, we surveyed all liana stems ≥ 1 cm in diameter at breast height within 50 subplots (10 m × 10 m each) and recorded their diameter and the diameter of the host tree. Of a total of 445 liana individuals, 242 could be identified at least to the family level, while the others had clear morphological traits of climbing mechanisms. The number of liana stems was higher in areas that had been at the building/gap phase than those at the mature phase in 1993. When this 25-year-old legacy of past gap locations was considered, there was a positive association of local abundance between lianas and trees in areas at the mature phase in 2018. In conclusion, liana abundance reflected a long-term legacy of past treefall gaps more than 25 years earlier in this seasonal evergreen forest

    Antinociceptive Effects of Intrathecal Landiolol Injection in a Rat Formalin Pain Model

    Get PDF
    Perioperative beta-blocker administration has recently been recommended for patients undergoing cardiac or other surgery due to the beneficial cardiovascular effects of these agents. In addition, some studies have reported that perioperatively administered beta-blockers also have analgesic effects. In this study, to investigate the antinociceptive effects and the analgesic profile of landiolol, we examined the effects of intrathecal landiolol administration on nociceptive pain behavior and c-fos mRNA expression (a neural marker of pain) in the spinal cord using a rat formalin model. We found that pain-related behavior was inhibited by intrathecal landiolol administration. Moreover, the increase in c-fos mRNA expression on the formalin-injected side was less pronounced in rats administered landiolol than in saline administered controls. Thus, intrathecal administration of landiolol exhibited antinociceptive effects. Further investigation of the antinociceptive mechanism of landiolol is required

    Eradication of Hepatitis C Virus Subgenomic Replicon by Interferon Results in Aberrant Retinol-Related Protein Expression

    Get PDF
    Hepatitis C virus (HCV) infection induces several changes in hepatocytes, such as oxidative stress, steatosis, and hepatocarcinogenesis. Although considerable progress has been made during recent years, the mechanisms underlying these functions remain unclear. We employed proteomic techniques in HCV replicon-harboring cells to determine the effects of HCV replication on host-cell protein expression. We examined two-dimensional electrophoresis (2-DE) and mass spectrometry to compare and identify differentially expressed proteins between HCV subgenomic replicon-harboring cells and their “cured” cells. One of the identified proteins was confirmed using enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Full-length HCV genome RNA replicating and cured cells were also assessed using ELISA. Replicon-harboring cells showed higher expression of retinal dehydrogenase 1 (RALDH-1), which converts retinol to retinoic acid, and the cured cells showed higher expression of retinol-binding protein (RBP), which transports retinol from the liver to target tissues. The alteration in RBP expression was also confirmed by ELISA and Western blot analysis. We conclude that protein expression profiling demonstrated that HCV replicon eradication affected retinol-related protein expression

    Truncated SSX Protein Suppresses Synovial Sarcoma Cell Proliferation by Inhibiting the Localization of SS18-SSX Fusion Protein

    Get PDF
    Synovial sarcoma is a relatively rare high-grade soft tissue sarcoma that often develops in the limbs of young people and induces the lung and the lymph node metastasis resulting in poor prognosis. In patients with synovial sarcoma, specific chromosomal translocation of t(X; 18) (p11.2; q11.2) is observed, and SS18-SSX fusion protein expressed by this translocation is reported to be associated with pathogenesis. However, role of the fusion protein in the pathogenesis of synovial sarcoma has not yet been completely clarified. In this study, we focused on the localization patterns of SS18-SSX fusion protein. We constructed expression plasmids coding for the full length SS18-SSX, the truncated SS18 moiety (tSS18) and the truncated SSX moiety (tSSX) of SS18-SSX, tagged with fluorescent proteins. These plasmids were transfected in synovial sarcoma SYO-1 cells and we observed the expression of these proteins using a fluorescence microscope. The SS18-SSX fusion protein showed a characteristic speckle pattern in the nucleus. However, when SS18-SSX was co-expressed with tSSX, localization of SS18-SSX changed from speckle patterns to the diffused pattern similar to the localization pattern of tSSX and SSX. Furthermore, cell proliferation and colony formation of synovial sarcoma SYO-1 and YaFuSS cells were suppressed by exogenous tSSX expression. Our results suggest that the characteristic speckle localization pattern of SS18-SSX is strongly involved in the tumorigenesis through the SSX moiety of the SS18-SSX fusion protein. These findings could be applied to further understand the pathogenic mechanisms, and towards the development of molecular targeting approach for synovial sarcoma

    Spatial and temporal rainfall patterns in Central Dry Zone, Myanmar - A hydrological cross-scale analysis

    Full text link
    Myanmar (Burma) is traditionally an agriculture-based country. However, irrigation is not available in most of its agricultural lands. This study focuses on the Central Dry Zone (CDZ), which is the driest part of Myanmar. Exploratory data analysis, semivariogram analysis and modeling, K-means cluster analysis and principal component analysis were conducted in this study to investigate the general CDZ climatology. The spatial and temporal rainfall variation patterns of different scales, including daily, event-scale and monthly rainfall are studied. A climatological monsoon break divides the wet season into two peaks. The monsoon break is the result of different climate dynamics â May-to-June period monsoon southwesterly and August-to-October period tropical cyclone vorticity. Rainfall stations in different clusters identified by the K-means cluster analysis reflect the orographic effect and different climate dynamics, which influence the spatial and temporal rainfall variation patterns in the CDZ. Principal component analysis results for average monthly rainfall reveals that the first principal component mainly explains the spatial variabilities in average monthly rainfall in the CDZ. The second principal component explains the seasonal (temporal) variation in average monthly rainfall. It was found that during the wet season, spatial rainfall variations in the CDZ are more significant than the seasonal (temporal) rainfall variation. Understanding the spatial and temporal variability in CDZ rainfall can provide valuable information on potential water availability in both the time and spatial domains, which will then enable making sound cropland planning and forest management decisions

    Development of a novel analgesic for cancer pain targeting brain-derived neurotrophic factor

    Get PDF
    Brain-derived neurotrophic factor (BDNF) is necessary for nerve growth. BDNF is expressed in the dorsal root ganglion (DRG) and modulates pain transduction from peripheral nociceptors. TrkB, which is a BDNF receptor with a tyrosine kinase domain, acts as a pain modulator on the cell membrane of second neuron. If an exogenous truncated TrkB lacking a tyrosine kinase domain can competitively block the binding of BDNF to endogenous TrkB, inhibitory effects on pain are expected. We constructed two expression vectors coding truncated TrkB-GFP fusion proteins, lacking intracellular tyrosine kinase domain, with and without the transmembrane domain. By transfection of the vectors to HEK293 cells, the expression and localization of the modified receptor proteins were confirmed. The truncated TrkB with the transmembrane domain, TM (+), was localized on cell membrane surface of the transfected cells, and capable of BDNF binding on cell surface. TM (-) without the transmembrane domain was secreted from the transfected cells, and the secreted TrkB protein was confirmed the capability for binding with BDNF by pull-down assay. Furthermore, we developed a rat model of cancerous osteocopic pain for evaluating an analgesic effect of the modified TrkB vectors on cancer pain. Pain-related behavior, as assessed by von Frey tests, indicated hyperalgesia after cancer cell administration. BDNF expression was higher on the affected side of the DRG at the third lumbar vertebra L3 than on the unaffected side. When the modified TrkB vectors were administrated to the cancer pain model rats, both the TM (+) and TM (-) vector administration groups exhibited an analgesic effect. These results suggest that the modified TrkB receptors and their vectors are applicable as molecular targeted drugs for pain control in cancer patients

    The Effect of Logging and Strip Cutting on Forest Floor Light Condition and Following Change

    Get PDF
    We monitored changes in light conditions at a primary forest and two managed forest sites (one with line planting) after reduced-impact logging in Central Kalimantan, Indonesia. We also assessed the effect of the light conditions on seedlings in the planting lines. Hemispherical photographs were taken over a period of 31 months in three 50 × 50-m quadrats at each site and in three 100-m transects along the planting lines. The location of each photo was categorized according to the corresponding type of disturbance, including skid trails, logging gaps, and planting lines. Following logging, the level of canopy openness (CO) increased at both managed forest sites and did not differ significantly between the two. However, CO was greater in skid trails and logging gaps than in planting lines. After 31 months, the mean level of CO at each managed site had decreased significantly due to the establishment of new seedlings. Correlations between changes in CO and the growth of planted seedlings suggested that growth was inhibited by the invasion of the new species. However, the level of CO along the planting lines was greater than that at other disturbed locations. A high level of CO promoted invasion by new species that colonized the space. Line planting may influence forest dynamics and maintain a high level of CO
    corecore