2,682 research outputs found
The Phase Diagram of Crystalline Surfaces
We report the status of a high-statistics Monte Carlo simulation of
non-self-avoiding crystalline surfaces with extrinsic curvature on lattices of
size up to nodes. We impose free boundary conditions. The free energy
is a gaussian spring tethering potential together with a normal-normal bending
energy. Particular emphasis is given to the behavior of the model in the cold
phase where we measure the decay of the normal-normal correlation function.Comment: 9 pages latex (epsf), 4 EPS figures, uuencoded and compressed.
Contribution to Lattice '9
Collapse of Randomly Self-Interacting Polymers
We use complete enumeration and Monte Carlo techniques to study
self--avoiding walks with random nearest--neighbor interactions described by
, where is a quenched sequence of ``charges'' on the
chain. For equal numbers of positive and negative charges (), the
polymer with undergoes a transition from self--avoiding behavior to a
compact state at a temperature . The collapse temperature
decreases with the asymmetry Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-
Theta-point universality of polyampholytes with screened interactions
By an efficient algorithm we evaluate exactly the disorder-averaged
statistics of globally neutral self-avoiding chains with quenched random charge
in monomer i and nearest neighbor interactions on
square (22 monomers) and cubic (16 monomers) lattices. At the theta transition
in 2D, radius of gyration, entropic and crossover exponents are well compatible
with the universality class of the corresponding transition of homopolymers.
Further strong indication of such class comes from direct comparison with the
corresponding annealed problem. In 3D classical exponents are recovered. The
percentage of charge sequences leading to folding in a unique ground state
approaches zero exponentially with the chain length.Comment: 15 REVTEX pages. 4 eps-figures . 1 tabl
Triple Products and Yang-Baxter Equation (II): Orthogonal and Symplectic Ternary Systems
We generalize the result of the preceeding paper and solve the Yang-Baxter
equation in terms of triple systems called orthogonal and symplectic ternary
systems. In this way, we found several other new solutions.Comment: 38 page
Apex Exponents for Polymer--Probe Interactions
We consider self-avoiding polymers attached to the tip of an impenetrable
probe. The scaling exponents and , characterizing the
number of configurations for the attachment of the polymer by one end, or at
its midpoint, vary continuously with the tip's angle. These apex exponents are
calculated analytically by -expansion, and numerically by simulations
in three dimensions. We find that when the polymer can move through the
attachment point, it typically slides to one end; the apex exponents quantify
the entropic barrier to threading the eye of the probe
From Collapse to Freezing in Random Heteropolymers
We consider a two-letter self-avoiding (square) lattice heteropolymer model
of N_H (out ofN) attracting sites. At zero temperature, permanent links are
formed leading to collapse structures for any fraction rho_H=N_H/N. The average
chain size scales as R = N^{1/d}F(rho_H) (d is space dimension). As rho_H -->
0, F(rho_H) ~ rho_H^z with z={1/d-nu}=-1/4 for d=2. Moreover, for 0 < rho_H <
1, entropy approaches zero as N --> infty (being finite for a homopolymer). An
abrupt decrease in entropy occurs at the phase boundary between the swollen (R
~ N^nu) and collapsed region. Scaling arguments predict different regimes
depending on the ensemble of crosslinks. Some implications to the protein
folding problem are discussed.Comment: 4 pages, Revtex, figs upon request. New interpretation and emphasis.
Submitted to Europhys.Let
Ground States of Two-Dimensional Polyampholytes
We perform an exact enumeration study of polymers formed from a (quenched)
random sequence of charged monomers , restricted to a 2-dimensional
square lattice. Monomers interact via a logarithmic (Coulomb) interaction. We
study the ground state properties of the polymers as a function of their excess
charge for all possible charge sequences up to a polymer length N=18. We
find that the ground state of the neutral ensemble is compact and its energy
extensive and self-averaging. The addition of small excess charge causes an
expansion of the ground state with the monomer density depending only on .
In an annealed ensemble the ground state is fully stretched for any excess
charge .Comment: 6 pages, 6 eps figures, RevTex, Submitted to Phys. Rev.
Phase transitions of a tethered surface model with a deficit angle term
Nambu-Goto model is investigated by using the canonical Monte Carlo
simulations on fixed connectivity surfaces of spherical topology. Three
distinct phases are found: crumpled, tubular, and smooth. The crumpled and the
tubular phases are smoothly connected, and the tubular and the smooth phases
are connected by a discontinuous transition. The surface in the tubular phase
forms an oblong and one-dimensional object similar to a one-dimensional linear
subspace in the Euclidean three-dimensional space R^3. This indicates that the
rotational symmetry inherent in the model is spontaneously broken in the
tubular phase, and it is restored in the smooth and the crumpled phases.Comment: 6 pages with 6 figure
Self-consistent variational theory for globules
A self-consistent variational theory for globules based on the uniform
expansion method is presented. This method, first introduced by Edwards and
Singh to estimate the size of a self-avoiding chain, is restricted to a good
solvent regime, where two-body repulsion leads to chain swelling. We extend the
variational method to a poor solvent regime where the balance between the
two-body attractive and the three-body repulsive interactions leads to
contraction of the chain to form a globule. By employing the Ginzburg
criterion, we recover the correct scaling for the -temperature. The
introduction of the three-body interaction term in the variational scheme
recovers the correct scaling for the two important length scales in the globule
- its overall size , and the thermal blob size . Since these two
length scales follow very different statistics - Gaussian on length scales
, and space filling on length scale - our approach extends the
validity of the uniform expansion method to non-uniform contraction rendering
it applicable to polymeric systems with attractive interactions. We present one
such application by studying the Rayleigh instability of polyelectrolyte
globules in poor solvents. At a critical fraction of charged monomers, ,
along the chain backbone, we observe a clear indication of a first-order
transition from a globular state at small , to a stretched state at large
; in the intermediate regime the bistable equilibrium between these two
states shows the existence of a pearl-necklace structure.Comment: 7 pages, 1 figur
Migration creation, diversion, and retention: new deal grants and migration ; 1935 - 1940
During the 1930s the federal government embarked upon an ambitious series of grant programs designed to counteract the Great Depression. Public works and relief programs combated unemployment by hiring workers and building social overhead capital while the Agricultural Adjustment Administration (AAA) sought to raise farm incomes by paying farmers not to produce. The amounts distributed varied widely across the country and potentially contributed to population shifts. We examine the extent to which New Deal spending affected domestic migration patterns in the second half of the 1930s. We estimate an aggregate discrete choice model, in which household heads choose among 466 economic subregions. The structural model allows us to decompose the effects of program spending on migration into three categories: the effect of spending on keeping households in their origin (retention), the effect of pulling non-migrants out of their origin (creation), and the effect of causing migrants to substitute away from an alternative destination (diversion). An additional dollar of public works and relief spending increased net migration into an area primarily by retaining the existing population and creating new migration into the county. Only a small share of the increase in net migration rate was caused by diversion of people who had already chosen to migrate. AAA spending contributed to net out migration, primarily by creating new out migrants and repelling potential in migrants. A counterfactual analysis that examines what would have happened had there been no New Deal spending during the 1930s suggests that the uneven distribution of New Deal public works and relief spending explains about twelve percent of the internal migration flows in the United States between 1935 and 1940. The uneven distribution of AAA spending accounted for about one percent
- …