1,242 research outputs found

    Efficient Coil Design by Electromagnetic Topology Optimization for Electromagnetic Sharp Edge Forming of DP980 Steel Sheet

    Get PDF
    This paper proposes a design method of the tool coil by topology optimization for the electromagnetic sharp edge forming process. Topology optimization is an approach that optimizes material configuration in a given domain to meet the design requirements. The design problem for the tool coil is defined as enhancing efficiency of the forming process and optimization problem is set to be maximization of the Lorentz force induced on the tool coil. A new topology optimization formulation based on the numerical methods for electromagnetism using FEM and BEM is developed for maximization of the Lorentz force. Optimum design of the tool coil is obtained by the topology optimization using the element density approach. The optimized result is compared with other coils which have different configurations to show the effectiveness of the proposed method. The idea of applying topology optimization to the design of the tool coil is successful and this formulation deals effectively for the optimization problems

    The Supersymmetric Standard Models with Decay and Stable Dark Matters

    Get PDF
    We propose two supersymmetric Standard Models (SMs) with decaying and stable dark matter (DM) particles. To explain the SM fermion masses and mixings and have a heavy decay DM particle S, we consider the Froggatt-Nielsen mechanism by introducing an anomalous U(1)_X gauge symmetry. Around the string scale, the U(1)_X gauge symmetry is broken down to a Z_2 symmetry under which S is odd while all the SM particles are even. S obtains a vacuum expectation value around the TeV scale, and then it can three-body decay dominantly to the second/third family of the SM leptons in Model I and to the first family of the SM leptons in Model II. Choosing a benchmark point in the constrained minimal supersymmetric SM with exact R parity, we show that the lightest neutralino DM is consistent with the CDMS II experiment. Considering S three-body decay and choosing suitable parameters, we show that the PAMELA and Fermi-LAT experiments and the PAMELA and ATIC experiments can be explained in Model I and Model II, respectively.Comment: RevTex4, 26 pages, 6 figures, references added, version to appear in EPJ

    Modeling self-assembly of diblock copolymer-nanoparticle composites

    Full text link
    A cell dynamics method for domain separation of diblock copolymers (DBCPs) interacting with nanoparticles (NPs) whose diffusion coefficients depend on chain configuration is proposed for self-assembly of DBCP/NP composites. Increasing NP concentration slows down domain separation, but matching NP diffusion lengths and lamellar size of DBCPs reduces this effect. The model also explains features of different nanocomposites, such as morphological transitions induced by NPs, the coexistence of lamellar and hexagonal patterns in a single sample and peaked NP density profiles across the parallel domains.Comment: 21 pages, 7 figures include

    Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients

    Get PDF
    In patients with human epidermal growth factor receptor-2 (HER2)-overexpressing breast cancer, treatment with trastuzumab has been shown to markedly improve the outcome. We investigated the role of trastuzumab on brain metastasis (BM) in HER2-positive breast cancer patients. From 1999 to 2006, 251 patients were treated with palliative chemotherapy for HER2-positive metastatic breast cancer at Samsung Medical Center. The medical records of these patients were analysed to study the effects of trastuzumab on BM prevalence and outcomes. Patients were grouped according to trastuzumab therapy: pre-T (no trastuzumab therapy) vs post-T (trastuzumab therapy). The development of BM between the two treatment groups was significantly different (37.8% for post-T vs 25.0% for pre-T, P=0.028). Patients who had received trastuzumab had longer times to BM compared with patients who were not treated with trastuzumab (median 15 months for post-T group vs 10 months for pre-T group, P=0.035). Time to death (TTD) from BM was significantly longer in the post-T group than in the pre-T group (median 14.9 vs 4.0 months, P=0.0005). Extracranial disease control at the time of BM, 12 months or more of progression-free survival of extracranial disease and treatment with lapatinib were independent prognostic factors for TTD from BM

    P130Cas Attenuates Epidermal Growth Factor (EGF) Receptor Internalization by Modulating EGF-Triggered Dynamin Phosphorylation

    Get PDF
    BACKGROUND: Endocytosis controls localization-specific signal transduction via epidermal growth factor receptor (EGFR), as well as downregulation of that receptor. Extracellular matrix (ECM)-integrin coupling induces formation of macromolecular complexes that include EGFR, integrin, Src kinase and p130Cas, resulting in EGFR activation. In addition, cell adhesion to ECM increases EGFR localization at the cell surface and reduces EGFR internalization. The molecular mechanisms involved are not yet well understood. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the molecular mechanism by which p130Cas affects the endocytic regulation of EGFR. Biochemical quantification revealed that cell adhesion to fibronectin (FN) increases total EGFR levels and its phosphorylation, and that p130Cas is required for this process. Measurements of Texas Red-labeled EGF uptake and cell surface EGFR revealed that p130Cas overexpression reduces EGF-induced EGFR internalization, while p130Cas depletion enhances it. In addition, both FN-mediated cell adhesion and p130Cas overexpression reduce EGF-stimulated dynamin phosphorylation, which is necessary for EGF-induced EGFR internalization. Coimmunoprecipitation and GST pull-down assays confirmed the interaction between p130Cas and dynamin. Moreover, a SH3-domain-deleted form of p130Cas, which shows diminished binding to dynamin, inhibits dynamin phosphorylation and EGF uptake less effectively than wild-type p130Cas. CONCLUSIONS/SIGNIFICANCE: Our results show that p130Cas plays an inhibitory role in EGFR internalization via its interaction with dynamin. Given that the EGFR internalization process determines signaling density and specificity in the EGFR pathway, these findings suggest that the interaction between p130Cas and dynamin may regulate EGFR trafficking and signaling in the same manner as other endocytic regulatory proteins related to EGFR endocytosis

    Gold Nanoparticle-Based Surface-Enhanced Raman Scattering for Noninvasive Molecular Probing of Embryonic Stem Cell Differentiation

    Get PDF
    This study reports the use of gold nanoparticle-based surface-enhanced Raman scattering (SERS) for probing the differentiation of mouse embryonic stem (mES) cells, including undifferentiated single cells, embryoid bodies (EBs), and terminally differentiated cardiomyocytes. Gold nanoparticles (GNPs) were successfully delivered into all 3 mES cell differentiation stages without affecting cell viability or proliferation. Transmission electron microscopy (TEM) confirmed the localization of GNPs inside the following cell organelles: mitochondria, secondary lysosome, and endoplasmic reticulum. Using bright- and dark-field imaging, the bright scattering of GNPs and nanoaggregates in all 3 ES cell differentiation stages could be visualized. EB (an early differentiation stage) and terminally differentiated cardiomyocytes both showed SERS peaks specific to metabolic activity in the mitochondria and to protein translation (amide I, amide II, and amide III peaks). These peaks have been rarely identified in undifferentiated single ES cells. Spatiotemporal changes observed in the SERS spectra from terminally differentiated cardiomyocyte tissues revealed local and dynamic molecular interactions as well as transformations during ES cell differentiation

    Oxidation behavior of graphene-coated copper at intrinsic graphene defects of different origins

    Get PDF
    The development of ultrathin barrier films is vital to the advanced semiconductor industry. Graphene appears to hold promise as a protective coating; however, the polycrystalline and defective nature of engineered graphene hinders its practical applications. Here, we investigate the oxidation behavior of graphene-coated Cu foils at intrinsic graphene defects of different origins. Macro-scale information regarding the spatial distribution and oxidation resistance of various graphene defects is readily obtained using optical and electron microscopies after the hot-plate annealing. The controlled oxidation experiments reveal that the degree of structural deficiency is strongly dependent on the origins of the structural defects, the crystallographic orientations of the underlying Cu grains, the growth conditions of graphene, and the kinetics of the graphene growth. The obtained experimental and theoretical results show that oxygen radicals, decomposed from water molecules in ambient air, are effectively inverted at Stone-Wales defects into the graphene/Cu interface with the assistance of facilitators
    • …
    corecore