7 research outputs found

    FIH permits NAA10 to catalyze the oxygen-dependent lysyl-acetylation of HIF-1α

    No full text
    The N-terminal acetyltransferase A (NatA) complex, which is composed of NAA10 and NAA15, catalyzes N-terminal acetylation of many proteins in a co-translational manner. Structurally, the catalytic subunit NAA10 was believed to have no activity toward an internal lysine residue because the gate of its catalytic pocket is too narrow. However, several studies have demonstrated that the monomeric NAA10 can acetylate the internal lysine residues of several substrates including hypoxia-inducible factor 1α (HIF-1α). How NAA10 acetylates lysine residues has been an unsolved question. We here found that human FIH (factor inhibiting HIF) hydroxylates human NAA10 at W38 oxygen-dependently and this permits NAA10 to express the lysyl-acetyltransferase activity. The hydroxylated W38 forms a new hydrogen-bond with A67 and widens the gate at the catalytic pocket, which allows the entrance of a lysine residue to the site. Since the FIH-dependent hydroxylation of NAA10 occurs oxygen-dependently, NAA10 acetylates HIF-1α under normoxia but does not under hypoxia. Consequently, the acetylation promotes the pVHL binding to HIF-1α, and in turn HIF-1α is destructed via the ubiquitin-proteasome system. This study provides a novel oxygen-sensing process that determines the substrate specificity of NAA10 depending on an ambient oxygen tension. Keywords: FIH, NAA10, HIF-1α, Tryptophan hydroxylation, Lysine acetylatio

    FIH Is an Oxygen Sensor in Ovarian Cancer for G9a/GLP-Driven Epigenetic Regulation of Metastasis-Related Genes

    No full text
    The prolyl hydroxylase domain-containing proteins (PHD-13) and the asparaginyl hydroxlyase factor inhibiting HIF (FIH) are oxygen sensors for hypoxia-inducible factor-driven transcription of hypoxia-induced genes, but whether these sensors affect oxygen-dependent epigenetic regulation more broadly is not known. Here, we show that FIH exerts an additional role as an oxygen sensor in epigenetic control by the histone lysine methyltransferases G9a and GLP. FIH hydroxylated and inhibited G9a and GLP under normoxia. When the FIH reaction was limited under hypoxia, G9a and GLP were activated and repressed metastasis suppressor genes, thereby triggering cancer cell migration and peritoneal dissemination of ovarian cancer xenografts. In clinical specimens of ovarian cancer, expression of FIH and G9a were reciprocally associated with patient outcomes. We also identified mutations of FIH target motifs in G9a and GLP, which exhibited excessive H3K9 methylation and facilitated cell invasion. This study provides insight into a new function of FIH as an upstream regulator of oxygen-dependent chromatin remodeling. It also implies that the FIH-G9a/GLP pathway could be a potential target for inhibiting hypoxia-induced cancer metastasis. Significance: These findings deepen understanding of oxygen-dependent gene regulation and cancer metastasis in response to hypoxia. (C) 2017 AACR
    corecore