36 research outputs found

    Altered MRP is associated with multidrug resistance and reduced drug accumulation in human SW-1573 cells.

    Get PDF
    We have analysed the contribution of several parameters, e.g. drug accumulation, MDR1 P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP) and topoisomerase (topo) II, to drug resistance in a large set of drug-resistant variants of the human non-small-cell lung cancer cell line SW-1573 derived by selection with low concentrations of doxorubicin or vincristine. Selection with either drug nearly always resulted in MDR clones. The resistance of these clones could be explained by reduced drug accumulation and was associated with a decrease rather than an increase in the low MDR1 mRNA level. To test whether a decrease in MDR1 mRNA indirectly affected resistance in these cells, we introduced a MDR1-specific hammerhead ribozyme into wild-type SW-1573 cells. Although this led to a substantial reduction in MDR1 mRNA, it did not result in resistance. In all resistant clones we found an altered form of the multidrug resistance-associated protein (MRP), migrating slightly slower during SDS-polyacrylamide gel electrophoresis than MRP in parental cells. This altered MRP was also present in non-P-gp MDR somatic cell hybrids of the SW-1573 cells, demonstrating a clear linkage with the MDR phenotype. Treatment of crude cellular membrane fractions with N-glycanase, endoglycosidase H or neuraminidase showed that the altered migration of MRP on SDS-PAGE is due to a post-translational modification. There was no detectable difference in sialic acid content. In most but not all doxorubicin-selected clones, this MDR phenotype was accompanied by a reduction in topo II alpha mRNA level. No reduction was found in the clones selected with vincristine. We conclude from these results that selection of the SW-1573 cell line for low levels of doxorubicin or vincristine resistance, predominantly results in MDR with reduced drug accumulation associated with the presence of an altered MRP protein. This mechanism can be accompanied by other resistance mechanisms, such as reduced topo II alpha mRNA in case of doxorubicin selection

    Saccharomyces cerevisiae chitin biosynthesis activation by N-acetylchitooses depends on size and structure of chito-oligosaccharides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To explore chitin synthesis initiation, the effect of addition of exogenous oligosaccharides on <it>in vitro </it>chitin synthesis was studied. Oligosaccharides of various natures and lengths were added to a chitin synthase assay performed on a <it>Saccharomyces cerevisiae </it>membrane fraction.</p> <p>Findings</p> <p><it>N</it>-acetylchito-tetra, -penta and -octaoses resulted in 11 to 25% [<sup>14</sup>C]-GlcNAc incorporation into [<sup>14</sup>C]-chitin, corresponding to an increase in the initial velocity. The activation appeared specific to <it>N</it>-acetylchitooses as it was not observed with oligosaccharides in other series, such as beta-(1,4), beta-(1,3) or alpha-(1,6) glucooligosaccharides.</p> <p>Conclusions</p> <p>The effect induced by the <it>N</it>-acetylchitooses was a saturable phenomenon and did not interfere with free GlcNAc and trypsin which are two known activators of yeast chitin synthase activity <it>in vitro</it>. The magnitude of the activation was dependent on both oligosaccharide concentration and oligosaccharide size.</p

    Ontwerp van een fosfoorzuurfabriek met omkristallisatiesectie

    No full text
    Document uit de collectie Chemische ProcestechnologieDelftChemTechApplied Science

    Measurement of mechanical properties: case of rice grain

    No full text
    National audienc

    Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers

    No full text
    In order to identify patterns in bacterial community composition in freshwater habitats, we analyzed the available database of 16S rDNA sequences from freshwater plankton, including 24 new sequences from Parker River (Massachusetts, USA), 42 from Lake Soyang (South Korea) and 148 from Lake IJssel (The Netherlands). At this point, combined diversity studies using random cloning have deposited 689 bacterial and 75 plastid 16S rDNA sequences from the water column of rivers and lakes in North America, Europe and Asia. Systematic comparisons with the global database showed that the majority of the bacterial sequences were most closely related to other freshwater clones or isolates, while relatively few were closest to sequences recovered from soils or marine habitats. This habitat-specific clustering suggests that the clustered 16S rDNA sequences represent species or groups of species that are indigenous to freshwater. We have discerned 34 phylogenetic clusters of closely related sequences that are either restricted to freshwater or dominated by freshwater sequences. Of these clusters, 23 contained no cultivated organisms. These putative freshwater clusters were found among the alpha-, beta- and gamma-Proteobacteria, the Cytophaga-Flavobacterium-Bacteroides group, the Cyanobacteria, the Actinobacteria, the Verrucomicrobia, the green non-sulfur bacteria and candidate division OP10. This study shows that rivers and lakes have a specific planktonic bacterial community distinct from bacteria in neighboring environments such as soil and sediments. It also points out that these planktonic bacteria are distributed in diverse freshwater ecosystems around the world. [KEYWORDS: Microbial diversity 路 Ribosomal RNA gene 路 Freshwater 路 Habitat 路 Polymerase chain reaction 路 Phylogeny 路 Nucleotide sequence database

    Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers

    No full text
    In order to identify patterns in bacterial community composition in freshwater habitats, we analyzed the available database of 16S rDNA sequences from freshwater plankton, including 24 new sequences from Parker River (Massachusetts, USA), 42 from Lake Soyang (South Korea) and 148 from Lake IJssel (The Netherlands). At this point, combined diversity studies using random cloning have deposited 689 bacterial and 75 plastid 16S rDNA sequences from the water column of rivers and lakes in North America, Europe and Asia. Systematic comparisons with the global database showed that the majority of the bacterial sequences were most closely related to other freshwater clones or isolates, while relatively few were closest to sequences recovered from soils or marine habitats. This habitat-specific clustering suggests that the clustered 16S rDNA sequences represent species or groups of species that are indigenous to freshwater. We have discerned 34 phylogenetic clusters of closely related sequences that are either restricted to freshwater or dominated by freshwater sequences. Of these clusters, 23 contained no cultivated organisms. These putative freshwater clusters were found among the alpha-, beta- and gamma-Proteobacteria, the Cytophaga-Flavobacterium-Bacteroides group, the Cyanobacteria, the Actinobacteria, the Verrucomicrobia, the green non-sulfur bacteria and candidate division OP10. This study shows that rivers and lakes have a specific planktonic bacterial community distinct from bacteria in neighboring environments such as soil and sediments. It also points out that these planktonic bacteria are distributed in diverse freshwater ecosystems around the world. [KEYWORDS: Microbial diversity 路 Ribosomal RNA gene 路 Freshwater 路 Habitat 路 Polymerase chain reaction 路 Phylogeny 路 Nucleotide sequence database]

    Molecular characterization of cyanobacterial diversity in a shallow eutrophic lake

    No full text
    We have studied the diversity of pelagic cyanobacteria in Lake Loosdrecht, the Netherlands, through recovery and analysis of small subunit ribosomal RNA gene sequences from lake samples and cyanobacterial isolates. We used an adapted protocol for specific amplification of cyanobacterial rDNA for denaturing gradient gel electrophoresis (DGGE) analysis. This protocol enabled direct comparison of cyanobacterial community profiles with overall bacterial profiles. The theoretical amplification specificity of the primers was supported by sequence analysis of DNA from excised DGGE bands. Sequences recovered from these bands, in addition to sequences obtained by polymerase chain reaction (PCR) and cloning from lake DNA as well as from cyanobacterial isolates from the lake, revealed a diverse consortium of cyanobacteria, among which are representatives of the genera Aphanizomenon, Planktothrix, Microcystis and Synechococcus. One numerically important and persistent cyanobacterium in the lake, Prochlorothrix hollandica, appeared to co-occur with an unknown but related species. However, the lake is dominated by filamentous species that originally have been termed 'Oscillatoria limnetica-like'. We show that this is a group of several related cyanobacteria, co-occurring in the lake, which belong to the Limnothrix/Pseudanabaena group. The available variation among the coexisting strains of this group can explain the persistent dominance of the group under severe viral pressure.
    corecore