3 research outputs found
Recommended from our members
Influence of atmospheric species on the electrical properties of functionalized graphene sheets
We report on the time-dependent influence of atmospheric species on the electrical properties of functionalized graphene sheets (FGSs). When exposed to laboratory air, FGSs exhibit a significant, irreversible decrease in electrical conductance with time, strongly depending on the oxygen content of the FGSs. To separate the roles of charge carrier density and mobility in this aging process, we performed electron transport measurements using a back-gate field-effect transistor architecture. Investigating the position of the Dirac point under different atmospheres, we found that adsorbed atmospheric species result in pronounced p-doping, which – on a short time scale – can be reversed under nitrogen atmosphere. However, on a time scale of several days, the resistance increases irreversibly, while the Dirac point voltage remains constant. From these experiments, we conclude that the aging of FGSs is related to the chemisorption of atmospheric species leading to enhanced carrier scattering due to an increasing amount of sp(3)- regions and thus to a reduced charge carrier mobility
Limitations of the Tauc Plot Method
The Tauc plot is a method originally developed to derive the optical gap of amorphous semiconductors such as amorphous germanium or silicon. By measuring the absorption coefficient α(hν) and plotting (Formula presented.) versus photon energy hν, a value for the optical gap (Tauc gap) is determined. In this way non-direct optical transitions between approximately parabolic bands can be examined. In the last decades, a modification of this method for (poly-) crystalline semiconductors has become popular to study direct and indirect interband transitions. For this purpose, (ahν)n (n = (Formula presented.), 2) is plotted against hν to determine a value of the electronic bandgap. Due to the ease of performing UV–vis measurements, this method has nowadays become a standard to analyze various (poly-) crystalline solids, regardless of their different electronic structure. Although this leads partially to widely varying values of the respective bandgap of nominally identical materials, there is still no study that critically questions which peculiarities in the electronic structure prevent a use of the Tauc plot for (poly-) crystalline solids and to which material classes this applies. This study aims to close this gap by discussing the Tauc plot and its limiting factors for exemplary (poly-) crystalline solids with different electronic structures.ChemE/Catalysis Engineerin
Monitoring Catalytic 2-Propanol Oxidation over Co3O4 Nanowires via In Situ Photoluminescence Spectroscopy
Spectroscopic methods enabling real-time monitoring of dynamic surface processes are a prerequisite for identifying how a catalyst triggers a chemical reaction. We present an in situ photoluminescence spectroscopy approach for probing the thermo-catalytic 2-propanol oxidation over mesostructured Co3O4 nanowires. Under oxidative conditions, a distinct blue emission at ~420 nm is detected that increases with temperature up to 280 °C, with an intermediate maximum at 150 °C. Catalytic data gained under comparable conditions show that this course of photoluminescence intensity precisely follows the conversion of 2-propanol and the production of acetone. The blue emission is assigned to the radiative recombination of unbound acetone molecules, the n - π* transition of which is selectively excited by a wavelength of 270 nm. These findings open a pathway for studying thermo-catalytic processes via in situ photoluminescence spectroscopy thereby gaining information about the performance of the catalyst and the formation of intermediate products