3 research outputs found

    Bioinformatics and Molecular Dynamics Simulation Study of L1 Stalk Non-Canonical rRNA Elements: Kink-Turns, Loops, and Tetraloops

    No full text
    The L1 stalk is a prominent mobile element of the large ribosomal subunit. We explore the structure and dynamics of its non-canonical rRNA elements, which include two kink-turns, an internal loop, and a tetraloop. We use bioinformatics to identify the L1 stalk RNA conservation patterns and carry out over 11.5 μs of MD simulations for a set of systems ranging from isolated RNA building blocks up to complexes of L1 stalk rRNA with the L1 protein and tRNA fragment. We show that the L1 stalk tetraloop has an unusual GNNA or UNNG conservation pattern deviating from major GNRA and YNMG RNA tetraloop families. We suggest that this deviation is related to a highly conserved tertiary contact within the L1 stalk. The available X-ray structures contain only UCCG tetraloops which in addition differ in orientation (<i>anti</i> vs <i>syn</i>) of the guanine. Our analysis suggests that the <i>anti</i> orientation might be a mis-refinement, although even the <i>anti</i> interaction would be compatible with the sequence pattern and observed tertiary interaction. Alternatively, the <i>anti</i> conformation may be a real substate whose population could be pH-dependent, since the guanine <i>syn</i> orientation requires protonation of cytosine in the tertiary contact. In absence of structural data, we use molecular modeling to explore the GCCA tetraloop that is dominant in bacteria and suggest that the GCCA tetraloop is structurally similar to the YNMG tetraloop. Kink-turn Kt-77 is unusual due to its 11-nucleotide bulge. The simulations indicate that the long bulge is a stalk-specific eight-nucleotide insertion into consensual kink-turn only subtly modifying its structural dynamics. We discuss a possible evolutionary role of helix H78 and a mechanism of L1 stalk interaction with tRNA. We also assess the simulation methodology. The simulations provide a good description of the studied systems with the latest bsc0χ<sub>OL3</sub> force field showing improved performance. Still, even bsc0χ<sub>OL3</sub> is unable to fully stabilize an essential sugar-edge H-bond between the bulge and non-canonical stem of the kink-turn. Inclusion of Mg<sup>2+</sup> ions may deteriorate the simulations. On the other hand, monovalent ions can in simulations readily occupy experimental Mg<sup>2+</sup> binding sites

    rRNA C‑Loops: Mechanical Properties of a Recurrent Structural Motif

    No full text
    C-loop is an internal loop motif found in the ribosome and used in artificial nanostructures. While its geometry has been partially characterized, its mechanical properties remain elusive. Here we propose a method to evaluate global shape and stiffness of an internal loop. The loop is flanked by short A-RNA helices modeled as rigid bodies. Their relative rotation and displacement are fully described by six interhelical coordinates. The deformation energy of the loop is assumed to be a general quadratic function of the interhelical coordinates. The model parameters for isolated C-loops are inferred from unrestrained all-atom molecular dynamics simulations. C-loops exhibit high twist as reported earlier, but also a bend and a lateral displacement of the flanking helices. Their bending stiffness and lateral displacement stiffness are nearly isotropic and similar to the control A-RNA duplexes. Nevertheless, we found systematic variations with the C-loop position in the ribosome and the organism of origin. The results characterize global properties of C-loops in the full six-dimensional interhelical space and enable one to choose an optimally stiff C-loop for use in a nanostructure. Our approach can be readily applied to other internal loops and extended to more complex structural motifs

    Role of S‑turn2 in the Structure, Dynamics, and Function of Mitochondrial Ribosomal A‑Site. A Bioinformatics and Molecular Dynamics Simulation Study

    No full text
    The mRNA decoding site (A-site) in the small ribosomal subunit controls fidelity of the translation process. Here, using molecular dynamics simulations and bioinformatic analyses, we investigated the structural dynamics of the human mitochondrial A-site (native and A1490G mutant) and compared it with the dynamics of the bacterial A-site. We detected and characterized a specific RNA backbone configuration, S-turn2, which occurs in the human mitochondrial but not in the bacterial A-site. Mitochondrial and bacterial A-sites show different propensities to form S-turn2 that may be caused by different base-pairing patterns of the flanking nucleotides. Also, the S-turn2 structural stability observed in the simulations supports higher accuracy and lower speed of mRNA decoding in mitochondria in comparison with bacteria. In the mitochondrial A-site, we observed collective movement of stacked nucleotides A1408·C1409·C1410, which may explain the known differences in aminoglycoside antibiotic binding affinities toward the studied A-site variants
    corecore