14 research outputs found

    Realization of Ternary Reversible Circuits Using Improved Gate Library

    Get PDF
    AbstractTernary logic has some distinct advantage over binary logic. In this paper we propose a synthesis approach for ternary reversible circuits using ternary reversible gates. Our method takes a boolean function as input. The input is provided as .pla file. The .pla file is first converted into ternary logic function, which can be represented as permutation. The gate library used for synthesis is Ternary Not, Ternary Toffoli and Ternary Toffoli+ (NT ,TT ,TT +). The proposed constructive method, generates 3-cycles from the permutation, and then each 3-cycle is mapped to (NT ,TT ,TT +) gate library. Experimental results show that the method generates lesser number of gates for some circuits compared to previously reported works

    Towards a Cost Metric for Nearest Neighbor Constraints in Reversible Circuits

    Get PDF
    Abstract. This work in progress report proposes a new metric for estimating nearest neighbor cost at the reversible circuit level. This is in contrast to existing literature where nearest neighbor constraints are usually considered at the quantum circuit level. In order to define the metric, investigations on a state-of-the-art reversible to quantum mapping scheme have been conducted. From the retrieved information, a proper estimation to be used as a cost metric has been obtained. Using the metric, it becomes possible for the first time to optimize a reversible circuit with respect to nearest neighbor constraints

    Quaternary quantum/reversible half-adder, full-adder, parallel adder and parallel adder/subtractor circuits

    No full text
    Multiple valued quantum logic is a promising research area in quantum computing technology having several advantages over binary quantum logic. Adder circuits as well as subtractor circuits are the major components of various computational units in computers and other complex computational systems. In this paper, we propose a quaternary quantum reversible half-adder circuit using quaternary 1-qudit gates, 2-qudit Feynman and Muthukrishnan-Stroud gates. Then we propose a quaternary quantum reversible full adder and a quaternary quantum parallel adder circuit. In addition, we propose a quaternary quantum reversible parallel adder/subtractor circuit. The proposed designs are compared with existing designs and improvements in terms of hardware complexity, quantum cost, number of constant inputs and garbage outputs are reported
    corecore