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Abstract

Ternary logic has some distinct advantage over binary logic. In this paper we propose a synthesis approach for ternary reversible

circuits using ternary reversible gates. Our method takes a boolean function as input. The input is provided as .pla file. The .pla

file is first converted into ternary logic function, which can be represented as permutation. The gate library used for synthesis is

Ternary Not, Ternary Toffoli and Ternary Toffoli+ (NT ,TT ,TT
+). The proposed constructive method, generates 3-cycles from the

permutation, and then each 3-cycle is mapped to (NT ,TT ,TT
+) gate library. Experimental results show that the method generates

lesser number of gates for some circuits compared to previously reported works.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Organizing Committee of ICACC 2016.
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1. Introduction

Multi-valued logic (MVL) has got several advantages over the binary logic in quantum computation viz., better

security for quantum cryptography and more power for quantum information processing. Among the MVL realization

of quantum circuits, three-valued logic (ternary logic) plays an important role and is termed as qutrit (quantum ternary

digit). The amount of information that can be stored per bit for ternary logic is more as compared to the binary

logic. It is expected that qutrit-based quantum information processing will be more powerful than qubit (two-valued)

implementation.13 As a result, many researchers have proposed ternary quantum logic synthesis approaches.8 5 12

There are two approaches for ternary reversible circuit synthesis which includes group theory based approach and

Genetic Algorithm (GA) based approach.There exists some group theoretic approaches in literature for synthesis of

ternary reversible circuits18 15 17 which synthesizes the circuits using different gate libraries. Li et al. 10 proposed the

synthesis of ternary non-reversible circuits using the ternary Swap, Not and Toffoli (SNT) gates. They converted

the non-reversible ternary logic circuits into ternary reversible logic circuits and obtained 3-cycles from the given

boolean function which are decomposed into the product of neighbouring 3-cycles. Then the neighbouring 3-cycles
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are synthesized using SNT gate library which increases the gate count to synthesize the circuits but reduces the number

of ancilla input and garbage output bits. GA based synthesis of ternary reversible circuits have been reported in2 11 9

that has a large search space for solving problems in reversible circuits and the successful selection of fitness function

is very important to achieve the convergence for search solution.

In this paper, we develop a group theory based ternary reversible synthesis method, which require the ternary Toffoli,

ternary toffoli+ and ternary Not gates to synthesize the ternary reversible circuits. The use of (NT ,TT ,TT
+) gate

library helps in the reduction of gate count as compared to existing work10. The rest of the paper is organized as

follows: Section II presents the basic concepts of ternary reversible gates. The proposed approach with an example

to realize the ternary reversible circuits are given in section III. Section IV summarizes the experimental results for

some benchmarks followed by conclusion in section V.

2. Basic Concepts and Ternary Reversible Gates

In this section we discuss about ternary reversible gates and circuits. In a general form a ternary reversible gate can

be defined in the following way:

Definition 1. A ternary reversible gate with n-inputs represent a bijection of: T n → T n where T denote the set of
ternary logic values {0, 1, 2}.
In synthesizing the circuits, gates are added to the circuit in order to realize the desired functionality. Like binary

reversible circuit, a ternary reversible circuit is defined as:

Definition 2. A ternary reversible circuit represents a cascade of ternary reversible gates, i.e.,

C = T1T2 . . .T� =
�⋂

i=1

Ti

without any feedback or fanout.

The outputs of a ternary reversible function is a permutation of its inputs.

Definition 3. A permutation on M = {d1, d2, . . . , dn} is a bijection of M onto itself, M → M.

The set of all permutations on inputs, forms a group under composition of mapping, called symmetric group S k
3. A

permutation group is simply a subgroup of a symmetric group. A mapping S : M → M can be written as a product of

disjoint cycles.

Example 1. For the inputs {d1, d2, d3, d4, d5, d6, d7, d8, d9} one possible mapping is

mapping =
(
d1 d2 d3 d4 d5 d6 d7 d8 d9

d1 d4 d7 d2 d5 d8 d3 d6 d9

)

which can also be written as a composition of (d2, d4), (d3, d7) and (d6, d8).

Definition 4. For a given group of symbols d1, d2, . . . , dn ∈ S n a mapping di1 → di2 · · · → dik → di1, where k ≤ n and
1 ≤ i1, i2, . . . , ik ≤ n is called a k-cycle denoted as (di1, di2, . . . , dik).

In realizing the reversible circuits, Toffoli gate is used extensively in binary domain. In ternary domain the funtionality

of the gate is extended and the gate is termed as Ternary Toffoli gate.

Definition 5. A ternary Toffoli gate T ({B2, B3}; B1) is defined such that if the state of control qutrits B2, B3 ∈ {1, 2}
and B2 = B3, then the state of target qutrit B1 is realized as P1 = B1 ⊕3 1, where ⊕3 stands for addition modulo 3;
otherwise, P1 = B1, whereas Pi = Bi, for i � 1.

In other words, (B1, B2, B3) maps to (B1 ⊕ 1, B2, B3) using modulo 3 addition when B2, B3 ∈ {1, 2} and B2 = B3. Fig. 1

shows a Ternary Toffoli gate and its corresponding truth table is presented in Table 1 where X ∈ {0, 1, 2}.
The operation of a ternary reversible gate can be realized using a cascade of elementary multi-valued M-S gates

that can be implemented using ion-trap technology14.
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Fig. 1: Ternary Toffoli gate Fig. 2: Ternary Toffoli+ gate

Table 1: Truth table of Ternary Toffoli Gate

B3 B2 B1 P3 P2 P1

0 0 X 0 0 X
0 1 X 0 1 X
0 2 X 0 2 X
1 0 X 1 0 X
1 1 0 1 1 1

1 1 1 1 1 2

1 1 2 1 1 0

1 2 X 1 2 X
2 0 X 2 0 X
2 1 X 2 1 X
2 2 0 2 2 1

2 2 1 2 2 2

2 2 2 2 2 0

Table 2: Truth table of Ternary Toffoli+

Gate

B3 B2 B1 P3 P2 P1

0 0 X 0 0 X
0 1 X 0 1 X
0 2 X 0 2 X
1 0 X 1 0 X
1 1 X 1 1 X
1 2 0 1 2 2

1 2 1 1 2 0

1 2 2 1 2 1

2 0 X 2 0 X
2 1 0 2 1 2

2 1 1 2 1 0

2 1 2 2 1 1

2 2 X 2 2 X

Definition 6. Muthukrishnan-Stroud (M-S) gate G(A; B) is defined as the input value A controls the output value Q,
which is the Z-transformation of input B whenever A = 2, where Z = {+1,+2, 12, 01, 02}.
The M-S gate is considered to be an elementary quantum building block which has a cost of 17. Fig. 3 shows the

graphical representation of a M-S gate. The operation of a M-S gate can be realized by Eqn. (1).

M-S(A, B) =

⎧⎪⎪⎨⎪⎪⎩
B S hi f t by Z if A = 2

B, otherwise
(1)

where Z = {+1,+2, 01, 02, 12}. The Z-transformation is also presented in Table 3.

Fig. 3: M-S gate

Fig. 4: Illustrative ternary Toffoli+ gate realization using

M-S gate

The quantum realization of ternary Toffoli gate requires 5 M-S gates operating in a sequence when both control

qutrits are in state 2 6 and the realization requires 4 additional 1-qutrit elementary gates when both control qutrits are

in state 1 are as shown in Fig. 5.

An extension to Ternary Toffoli gate, Ternary Toffoli+ is also considered in the synthesis process.
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Table 3: Truth Table of Z transformation

Input B Output Q

Z(+1) Z(+2) Z(12) Z(01) Z(02)

0 1 2 0 1 2

1 2 0 2 0 1

2 0 1 1 2 0

Fig. 5: (a) Realization with both controls in state 2 ; (b) Realization with both controls in state 1

Fig. 6: (a) Illustration of a ternary Not gate; (b) Equivalent elementary gate realization

Definition 7. A ternary Toffoli+ gate T ({B2, B3}; B1) is defined such that if the state of control qutrits B2, B3 ∈ {1, 2}
and B2 � B3, then the state of target qutrit B1 is realized as P1 = B1 ⊕3 2, where ⊕3 stands for addition modulo 3;
otherwise, P1 = B1, whereas Pi = Bi, for i � 1.

Fig. 2 shows a ternary Toffoli+ gate and its corresponding truth table is presented in Table 2 where X ∈ {0, 1, 2}. The

M-S gate realization cost of a Ternary Toffoli+ gate is 7. Fig. 4 shows the quantum implementaton of a ternary Toffoli+

gate operating on target qutrit C when control qutrits A and B are in state 2 and 1 respectively.

In order to make the library universal, a Ternary NOT gate is also included in the library.

Definition 8. A ternary NOT gate T (∅; Bi) is defined as Pi= Bi ⊕3 1, where ⊕3 stands for addition modulo 3.

The pictorial representation of ternary NOT gate and its equivalent quantum implementation using ternary shift gate

is shown in Fig. 6.

Table 4 summarizes the working of all the reversible gates from the library, termed as (NT ,TT ,TT
+) that is used in

proposed synthesis approach.

Table 4: Working of Ternary Reversible Gates

Toffoli Toffoli+ NOT

Controls Change

in Tar-

get

Controls Change

in Tar-

get

Change

in Tar-

get

1 1

2 2

0→ 1

1→ 2

2→ 0

1 2

2 1

0→ 2

2→ 1

1→ 0

0→ 1

1→ 2

2→ 0

Table 5: Realization of all 3-cycles

3-cycles #N #Ci11 #Ci22 #Ci12

(3, 10, 5) 3 7 0 3

(4, 11, 8) 2 6 3 6

Total 5 13 3 9
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The decimal encoding for the qutrit is different from that of qubit. The ternary value abc in decimal encoding is

represented as 9a + 3b + c (i.e., 32 × a + 31 × b + 30 × c), e.g., the decimal value 3 in qutrit representation is 010.

3. Proposed Approach

The synthesis method takes a .pla file as input, performs required ternary transformation, generate all the 3-cycles

and use the (NT ,TT ,TT
+) library for synthesis. The schematic diagram for ternary reversible circuit synthesis is

shown in Fig. 7. The .pla files in binary representation are taken from RevLib16. These .pla files are converted into

Fig. 7: Schematic Diagram for Ternary Reversible Circuit Synthesis

ternary representation by necessary transformation and the 3-cycles are generated from the ternary representation.

The transformation approach is presented as below:

Step 1: Input is a .pla file.

Step 2: Make the number of input lines in the binary representation is equal to the number of input lines in ternary

representation.

Step 3: If the output lines in the truth table is repeated for ≤ 3n times, n garbage output lines are to be added in the

output.

Step 4: Accordingly the number of input lines are added in ternary representation to make the truth table reversible.

Step 5: Apply the don’t care assignment to map the truth table.

Step 6: Derive the cycles from the permutation.

Step 7: Decompose the derived larger cycles into 2-cycles and 3-cycles using the group theoretic rules1.

Step 8: Even number of 2-cycles are combined together to form 3- cycles.

Step 9: Return the 3-cycles generated.

Then the 3-cycles are synthesized using the proposed algorithm with the help of the (NT ,TT ,TT
+) library. The

synthesis process started by transforming the matrix representing a 3-cycle. Initially, matrix generated from the 3-

cycle is reduced to 3 column matrix by applying gates from the (NT ,TT ,TT
+) library. Then the transformation of this

3 column matrix is carried out by applying gates from the (NT ,TT ,TT
+) library. The complete synthesis approach is

presented in the form of Algorithm 1 depicted below.

The complete synthesis process is illustrated by the following example.

Example 2. Consider a reversible function, which has been specified using the following input-output permutation:

fr = (0, 1, 2, 10, 11, 3, 6, 7, 4, 9, 5, 8, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26).
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Algorithm 1: Generation of Ternary 3-cycles

input : 3-cycles generated from transformation

output: Ternary reversible circuit

1 Generate matrix for each 3-cycle;

2 If the matrix has more than 3 columns;

3 Apply ternary gates if required to make the elements of a column identical;

4 Reduce the size of the matrix by eliminating column with identical element;

5 Repeat steps 2-4 until matrix is reduced to 3 columns matrix;

6 Check the value vi (= 1 or 2) of the first two column that appears maximum number of times;

7 Apply ternary gates to set the values of the first two column of the matrix vi;

8 Apply ternary gates if necessary to make the values of the last column as 0, 1 and 2 irrespective of their order;

9 Apply ternary Toffoli gate T ({c1, c2}; t) with controls on the first two columns (c1 = c2 = vi) and target t on the

3rd column;

10 Apply all the gates in the reverse order except the last one (applied in step 9);

11 Apply two identical gates if one such gate was applied earlier;

12 Otherwise apply one gate for each two previously applied identical gate;

13 Repeat steps 1-12 for all the 3-cycles;

14 Return the generated cascade of ternary reversible gates as the resulting circuit;

That is, input vector 0 maps to output vector 0, 1 maps to 1, 2 maps to 2 etc. The given permutation can be expressed
as a product of the following 3 cycles.

a. (3, 10, 5)

b. (4, 11, 8)

i. For the 3-cycle (3, 10, 5) the matrix representation with the decimal encoding of the qutrit is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0, 1, 0
1, 0, 1
0, 1, 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

ii. The number of 1′s is greater than number of 2′s in the matrix. So use Ternary Gates from (NT ,TT ,TT
+) library to

make the first and second column of the matrix as 1, i.e.,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0, 1, 0
1, 0, 1
0, 1, 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
C211−−−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0, 1, 0
1, 1, 1
0, 1, 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
C2

1
12−−−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0, 1, 0
1, 1, 1
1, 1, 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
N3−−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0, 1, 1
1, 1, 2
1, 1, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
C111−−−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1, 1, 1
1, 1, 2
1, 1, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here matrix columns are indexed from left to right as 1-3. The application of ternary Toffoli/Toffoli+ gate is
denoted by Cr

t S iS j, where t represents the target column index, r represents number of times the gate is applied,
and S i and S j, i < j represent the states of control qutrits on i-th and j-th columns. Similarly, the application of
ternary NOT gate is denoted by Nr

t , where t represents the target column index, and r represents number of times
the gate is applied.

iii. Now the third column contains three different values. So rotate the third column values only once to get the
matrix as follows using the Ternary Toffoli gate C311.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1, 1, 2
1, 1, 0
1, 1, 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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iv. Finally reverse all the gates applied from the step ii. to restore the states of qutrits as follows.
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1, 1, 2
1, 1, 0
1, 1, 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
C2

1
11−−−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1, 1, 2
1, 1, 0
0, 1, 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
N2

3−−→
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1, 1, 1
1, 1, 2
0, 1, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
C112−−−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1, 1, 1
0, 1, 2
0, 1, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
C2

2
11−−−→

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1, 0, 1
0, 1, 2
0, 1, 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Similarly, synthesis for the remaining 3-cycle, (4, 11, 8) is carried out by going through the steps i.-iv. The realization
for all the 3-cycles are given in Table 5.

4. Experimental Results

The method has been implemented using python and run on an Intel i3 based processor with 4 GB memory running

Ubuntu 12.04. In order to analyze the efficiency and effectiveness of the proposed cycle-based synthesis method using

Table 6: Synthesis Results for Benchmark

Benchmark l N T11 T22 T12 n qc

4 49 7 3 39 39 0 24 4 558

4gt11 23 5 18 23 8 18 6 391

4gt13 25 4 9 17 0 21 5 309

4gt5 21 6 30 88 24 84 7 1530

4mod5 8 5 18 17 14 24 6 409

5xp1 90 10 648 1208 595 1212 11 22979

alu 9 7 78 138 30 102 8 2184

graycode6 11 5 105 205 117 210 6 4005

half adder 3 18 27 19 24 4 524

ham7 29 6 246 477 266 552 7 9733

max46 177 12 603 961 160 588 13 14168

mini-alu 84 5 60 111 42 81 6 1836

mod5adder 66 5 60 75 82 102 6 1859

mod5d1 16 4 42 16 110 69 5 1219

mod5d2 17 4 87 99 55 99 5 1946

one-two-three 27 3 24 27 26 24 4 565

radd 193 13 1296 2760 948 3036 14 52128

rd32 19 3 27 30 32 30 4 667

rd73 69 12 654 1101 533 1251 13 21985

root 197 12 1200 2543 957 2610 13 47142

sqn 203 10 384 767 212 762 11 13681

sqrt8 205 13 1599 3128 961 2586 14 52658

Table 7: Comparison of Implementation

Ternary Half Adder Gate library #ancilla #garbage #gates

12 TF ,TC2NOTGate, TT 2 2 4
10 NT ,TT 1 1 122

Our NT ,TT ,T+T 1 1 88
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gates from ternary (NT ,TT ,TT
+) library, we run the proposed method using benchmarks and presented the results in

Table 6. The benchmarks are realized for the first time except ternary half adder and therefore, cannot be compared

with other results. The first two columns represent name of the benchmarks and number of qutrits (l) required to

realize the benchmark in ternary reversible domain. The next four columns shows in order the number of ternary NOT

gates (N), ternary Toffoli gates with all controls in state 1(T11), ternary Toffoli gates with all two controls in state 2

(T22), and ternary Toffoli+ gates with controls one in state 1 and another in state 2 (T12/T21) respectively. The last

two columns represent number of qutrits to realize the benchmark when decomposed using M-S4,14 gates and total

number of M-S gates (i.e., N ∗1+T11 ∗9+T22 ∗5+T12 ∗7 gates where 1, 9, 5 and 7 represent the number of M-S gates

required to realize the operation of N, T11, T22 and T12 gate respectively) that are required for an equivalent quantum

realization at logical level. To show improvements from running our method using (NT ,TT ,TT
+) library on ternary half

adder over previously reported results we have also presented our result in Table 7. As can be seen the implementation

of ternary half adder require one less ancilla/garbage line than12 and we have achieved 27% improvements over10.

5. Conclusion

In this paper a ternary reversible logic synthesis approach is proposed using (NT ,TT ,TT
+) gate library. Experimental

evaluation shows that for some circuits our result performs better compared to existing ones. Results are reported for

upto n=13 input size. This method is restricted to the use of 3 qutrit ternary reversible gates which in turn increases

the gate count to synthesize the benchmarks. The introduction of n-bit ternary Toffoli gate and 3-cycles optimization

are being investigated to reduce the gate count in benchmarks realization.
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