5 research outputs found
Breeding Mechanisms for High Temperature Tolerance in Crop Plants
Increase in global warming poses a severe threat on agricultural production thereby affecting food security. A drastic reduction in yield at elevated temperature is a resultant of several agro-morphological, physiological and biochemical modifications in plants. Heat tolerance is a complex mechanism under polygenic inheritance. Development of tolerant genotypes suited to heat extremes will be more advantageous to tropical and sub tropical regimes. A clear understanding on heat tolerance mechanism is needed for bringing trait based improvement in a crop species. Heat tolerance is often correlated with undesirable traits which limits the economic yield. In addition, high environmental interactions coupled with poor phenotyping techniques limit the progress of breeding programme. Recent advances in molecular technique led to precise introgression of thermo-tolerant genes into elite genetic background which has been reviewed briefly in this chapter
Assessing the Genetic Diversity of Parents for Developing Hybrids Through Morphological and Molecular Markers in Rice (Oryza sativa L.)
Abstract The advancement of hybrid technology plays a crucial role in addressing yield plateau and diminishing resources in rice cultivating regions. The knowledge of genetic diversity among parental lines is a prerequisite for effective hybrid breeding program. In the current study, a set of 66 parental lines was studied for diversity based on both morphological characters and microsatellite SSR markers. The genetic variability parameters unveiled that number of productive tillers per plant, single plant yield and hundred grain weight exhibited additive gene action. Mahalanobis D2 statistics grouped the genotypes into ten clusters based on yield and grain traits. The principal component analysis identified four PCs with eigen value more than one accounting for 71.28% of cumulative variance. The polymorphic SSR markers produced 122 alleles among which the marker RM474 recorded the highest values for Polymorphic Information Content (0.83) and heterozygosity index (0.85). The genotypes were assembled in seven clusters based on jaccard distances using the Unweighted Pair Group method with Arithmetic Mean (UPGMA). The population structure divided the entire population into 3 subpopulations. In both clustering, there was difference in the assembling of genotypes, but, good performing genotypes identified through PCA were positioned in different clusters in both approaches. The genotypes CBSN 495 and CBSN 494 located in different clusters were identified as the potential restorers for high yielding and short duration hybrids. The hybridization among CRR Dhan 310, CRR Dhan 315, IR64 DRT, CB 17135 and WGL 347 can be performed to develop climate smart varieties with improved nutrition
Speed Breeding: A Propitious Technique for Accelerated Crop Improvement
Development of climate-resilient genotypes with high agronomic value through conventional breeding consumes longer time duration. Speed breeding strategy involves rapid generation advancement that results in faster release of superior varieties. In this approach, the experimental crop is grown in a controlled environment (growth chambers) with manipulation provisions for temperature, photoperiod, light intensity, and moisture. The generation of the crop cycle can be hastened by inducing changes in the physiological process such as photosynthesis rate, flowering initiation, and duration. Speed breeding eases multiple trait improvement in a shorter span by integration of high-throughput phenotyping techniques with genotype platforms. The crop breeding cycle is also shortened by the implementation of selection methods such as single-seed descent, single plant selection, and marker-assisted selection
Calcium-Rich Pigeonpea Seed Coat: A Potential Byproduct for Food and Pharmaceutical Industries
Pigeonpea is a protein-rich legume which is consumed worldwide in a variety of forms (whole seed, dhal, and as a green vegetable). In India, pigeonpea is milled to yield dhal (cotyledon) and this process generates 25–35% waste byproducts. The hull (seed coat) which accounts for 10% of the byproduct is disposed of either as waste or low-cost cattle feed. To recycle the waste byproducts into the food value chain, this study was conducted with the objectives: (i) to estimate nutrient accumulation in the major seed fractions (cotyledon and seed coat), (ii) to estimate the percentage of nutrient contribution by major seed fractions, (iii) to assess the percentage of nutrient loss due to dehulling, and (iv) to determine the scope of seed coat in nutritional value addition. For this, a subset of 60 diverse pigeonpea accessions selected from 600 pigeonpea accessions raised during the 2019 and 2020 rainy seasons at ICRISAT, Patancheru, India, was subjected to a cotyledon and seed coat nutrient analysis. The three-way analysis of variance revealed the significant influence of cropping years, seed fractions, genotypes, and their interactions on nutrient accumulation. The nutrients, namely protein (32.28 ± 2.29%), P (476.51 ± 39.05 mg/100 g), K (1557.73 ± 66.82 mg/100 g), Fe (4.42 ± 0.41 mg/100 g), Zn (2.25 ± 0.21 mg/100 g), and Cu (0.95 ± 0.07 mg/100 g) were enriched in cotyledon. Mn was equally enriched in both the cotyledon and seed coat (1.02 ± 0.12 mg/100 g and 0.97 ± 0.34 mg/100 g, respectively). The seed coat had a high concentration of Ca (652.02 ± 114.82 mg/100 g), and Mg (249.19 ± 34.12 mg/100 g) with wide variability for Fe (2.74–5.61 mg/100 g), Zn (0.88–3.95 mg/100 g), Cu (0.38–1.44 mg/100 g), and Mn (0.58–2.18 mg/100 g). It is noteworthy that the protein and P contents in the cotyledon were 7 and 18 times higher than that in the seed coat, respectively, and the Ca content in the seed coat was 12 times higher than that in the cotyledon. A correlation study revealed that for overall nutrient improvement in dhal, selection for a small seed size was desirable. On an average, the percentage of nutrient contribution by major seed fractions revealed that the cotyledon portion contributed around 95% protein and P; 90% K and Zn; 85% Fe, Cu, and Mn; and 75% Mg, while the seed coat portion contributed nearly 65% Ca to the whole grain. The findings of high Fe and protein concentrations in the cotyledon and high Ca accumulation in the seed coat can serve as a new guide for improved technological fractionation of these components to serve as a novel functional food ingredient and as a dietary supplement that can address malnutrition