19 research outputs found

    CCN3 controls 3D spatial localization of melanocytes in the human skin through DDR1

    Get PDF
    Melanocytes reside within the basal layer of the human epidermis, where they attach to the basement membrane and replicate at a rate proportionate to that of keratinocytes, maintaining a lifelong stable ratio. In this study, we report that coculturing melanocytes with keratinocytes up-regulated CCN3, a matricellular protein that we subsequently found to be critical for the spatial localization of melanocytes to the basement membrane. CCN3 knockdown cells were dissociated either upward to the suprabasal layers of the epidermis or downward into the dermis. The overexpression of CCN3 increased adhesion to collagen type IV, the major component of the basement membrane. As the receptor responsible for CCN3-mediated melanocyte localization, we identified discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase that acts as a collagen IV adhesion receptor. DDR1 knockdown decreased melanocyte adhesion to collagen IV and shifted melanocyte localization in a manner similar to CCN3 knockdown. These results demonstrate an intricate and necessary communication between keratinocytes and melanocytes in maintaining normal epidermal homeostasis

    Endothelin-3 stimulates survival of goblet cells in organotypic cultures of fetal human colonic epithelium

    No full text
    Cells within the normal human colonic epithelium undergo a dynamic cycle of growth, differentiation, and death. The organotypic culture system of human fetal colonic epithelial cells seeded on top of collagen gels with embedded colonic fibroblasts allowed prolonged culture of the colonic epithelial cells (Kalabis J, Patterson MJ, Enders GM, Marian B, Iozzo RV, Rogler G, Gimotty PA, Herlyn M. FASEB J 17: 1115–1117, 2003). Herein, we have evaluated the role of endothelin-3 (ET3) and both cognate endothelin receptors (ETRA, ETRB) for human colonic epithelial cell growth and survival. ET3 was produced continuously by the fibroblasts as a result of adenovirus-mediated gene transfer. The presence and function of the endothelin receptors (ETRs) in epithelial cells was evaluated by [3H]thymidine incorporation using primary epithelial cells in monoculture and by immunohistochemistry on human fetal and adult paraffin-embedded tissues. In organotypic culture, ET3 increased the number of goblet cells but not of enteroendocrine cells. The increase in goblet cells was caused by prolonged cell survival and differentiation. The inhibition of both ETRA and ETRB significantly decreased the number of goblet cells and proliferation in epithelial cells, whereas the number of enteroendocrine cells remained unchanged. ET3 induced activation of IκB and MAPK in the epithelial cells, suggesting that these signaling pathways mediate its proproliferation and prosurvival activities. Our results demonstrate that ET3 is involved in regulating human colonic epithelial cell proliferation and survival, particularly for goblet cells, and may be an important component of colonic homeostasis

    Kultivace lidskych intestinalnich epitelii v organotypicke kulture.

    No full text
    Available from STL Prague, CZ / NTK - National Technical LibrarySIGLECZCzech Republi

    Influence of Ionizing Radiation on Stromal-Epithelial Intercellular Communication in Esophageal Carcinogenesis

    No full text
    Esophageal cancer is the 6th leading cause of cancer death worldwide. Its development is associated with a variety of risk factors including tobacco use, heavy alcohol consumption, human papilloma virus infection, and certain dietary factors such as trace mineral and vitamin deficiencies. An association with ionizing radiation exposure is revealed by the high excess relative risk for squamous cell carcinoma of the esophagus observed in the survivors of the atomic bomb detonations in Japan. It is also seen as a secondary malignancy in patients who received radiotherapy for breast and thoracic cancers; additionally, patients with head/neck and oral squamous cell cancers are at increased risk for metachronous esophageal squamous cell cancers. This malignancy is rapidly fatal, mainly because it remains asymptomatic until late, advanced stages when the disease is rarely curable. The stromal microenvironment plays an essential role in the maintenance and modulation of normal epithelial cell growth and differentiation and cross talk between the epithelial and stromal compartments can influence many aspects of malignant progression, including tumor cell proliferation, migration, invasion and recruitment of new blood vessels. To test the hypothesis that radiation exposure plays a role in esophageal carcinogenesis via non-targeted mechanisms involving stromal-epithelial cell communication, we are studying radiation effects on hTERT-immortalized human esophageal epithelial cells and genetic variants grown in co-culture with human esophageal stromal fibroblasts (Okawa et al., Genes & Dev. 2007. 21: 2788-2803). We examined how radiation treatment of stromal fibroblasts affected epithelial migration and invasion, behaviors associated with cancer promotion and progression. Chemotactic and haptotactic migration of epithelial cells stimulated by conditioned media from irradiated fibroblasts was measured using assays conducted in Transwell cell culture chambers. Our results using low LET radiation showed a dose-dependent increase in migration of epithelial cells when exposed to conditioned media from irradiated vs. non-irradiated fibroblasts. We also observed enhanced invasion through a basement membrane simulant. To identify chemotactic proteins secreted by irradiated stromal fibroblasts, we used antibody capture cytokine arrays and have identified several proteins as candidates. Increased secretion of these factors by irradiated fibroblasts was confirmed using ELISA. We are currently analyzing the contribution of these individual factors on epithelial migration and invasion, as well as their influence on cell survival and DNA repair. Studies using high-LET radiation will help determine radiation quality effects on these processes. These results should further our understanding of the mechanisms by which radiation impacts the tissue microenvironment and how it influences cancer development processes

    A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification

    No full text
    The esophageal epithelium is a prototypical stratified squamous epithelium that exhibits an exquisite equilibrium between proliferation and differentiation. After basal cells proliferate, they migrate outward toward the luminal surface, undergo differentiation, and eventually slough due to apoptosis. The identification and characterization of stem cells responsible for the maintenance of the esophageal epithelium remains elusive. Here, we employed Hoechst dye extrusion and BrdU label–retaining assays to identify in mice a potential esophageal stem cell population that localizes to the basal cell compartment. The self-renewing capacity of this population was characterized using a clonogenic assay and a 3D organotypic culture model. The putative esophageal stem cells were also capable of epithelial reconstitution in vivo in direct esophageal epithelial injury models. In both the 3D organotypic culture and direct mucosal injury models, the putative stem cells gave rise to undifferentiated and differentiated cells. These studies therefore provide a basis for understanding the regenerative capacity and biology of the esophageal epithelium when it is faced with injurious insults
    corecore