182 research outputs found

    Artificial intelligence : Training the trainer

    Get PDF
    Including artificial intelligence in haematological education is compulsory but should not be limited to students. Experienced haematologist and decision-makers in the clinical environment have at least similar needs. This is because of the tremendous potential, opportunities and benefits the timely inclusion of artificial intelligence offers in diagnosis, prediction and personalised therapy

    Proceedings of the Eleventh International Meeting on Neuroacanthocytosis Syndromes

    Get PDF
    The 11th International Meeting on Neuroacanthocytosis Syndromes was held on September 15th–17th, 2023 at the University Hospital Campus in Homburg/Saar, Germany. The meeting followed the previous ten international symposia, the last of which was held online due to restrictions due to COVID19, in March 2021. The setting of the meeting encouraged interactions, exchange of ideas, and networking opportunities among the participants from around the globe, including basic and clinical scientists, clinicians, and especially patients, their relatives and caregivers. A total of about 20 oral communications were presented in five scientific sessions accompanied by a keynote lecture, a “PosterBlitz” session, the “Glenn Irvine Prize” lecture and a panel discussion about “Patient registries, international cooperation & future perspectives”. In summary, attendees discussed recent advances and set the basis for the next steps, action points, and future studies in close collaboration with the patient associations, which were actively involved in the whole process

    Classification of red blood cell shapes in flow using outlier tolerant machine learning

    Get PDF
    The manual evaluation, classification and counting of biological objects demands for an enormous expenditure of time and subjective human input may be a source of error. Investigating the shape of red blood cells (RBCs) in microcapillary Poiseuille flow, we overcome this drawback by introducing a convolutional neural regression network for an automatic, outlier tolerant shape classification. From our experiments we expect two stable geometries: the so-called `slipper' and `croissant' shapes depending on the prevailing flow conditions and the cell-intrinsic parameters. Whereas croissants mostly occur at low shear rates, slippers evolve at higher flow velocities. With our method, we are able to find the transition point between both `phases' of stable shapes which is of high interest to ensuing theoretical studies and numerical simulations. Using statistically based thresholds, from our data, we obtain so-called phase diagrams which are compared to manual evaluations. Prospectively, our concept allows us to perform objective analyses of measurements for a variety of flow conditions and to receive comparable results. Moreover, the proposed procedure enables unbiased studies on the influence of drugs on flow properties of single RBCs and the resulting macroscopic change of the flow behavior of whole blood.Comment: 15 pages, published in PLoS Comput Biol, open acces

    Editorial: Insights in red blood cell physiology: 2021

    Full text link

    Editorial: Comparative biology of red blood cells

    Full text link
    • …
    corecore