52 research outputs found

    CD8+ T Cells Mediate the Athero-Protective Effect of Immunization with an ApoB-100 Peptide

    Get PDF
    Immunization of hypercholesterolemic mice with selected apoB-100 peptide antigens reduces atherosclerosis but the precise immune mediators of athero-protection remain unclear. In this study we show that immunization of apoE (-/-) mice with p210, a 20 amino acid apoB-100 related peptide, reduced aortic atherosclerosis compared with PBS or adjuvant/carrier controls. Immunization with p210 activated CD8+ T cells, reduced dendritic cells (DC) at the site of immunization and within the plaque with an associated reduction in plaque macrophage immunoreactivity. Adoptive transfer of CD8+ T cells from p210 immunized mice recapitulated the athero-protective effect of p210 immunization in naïve, non-immunized mice. CD8+ T cells from p210 immunized mice developed a preferentially higher cytolytic response against p210-loaded dendritic cells in vitro. Although p210 immunization profoundly modulated DCs and cellular immune responses, it did not alter the efficacy of subsequent T cell dependent or independent immune response to other irrelevant antigens. Our data define, for the first time, a role for CD8+ T cells in mediating the athero-protective effects of apoB-100 related peptide immunization in apoE (-/-) mice

    Enhanced Neointima Formation Following Arterial Injury in Immune Deficient Rag-1−/− Mice Is Attenuated by Adoptive Transfer of CD8+ T cells

    Get PDF
    T cells modulate neointima formation after arterial injury but the specific T cell population that is activated in response to arterial injury remains unknown. The objective of the study was to identify the T cell populations that are activated and modulate neointimal thickening after arterial injury in mice. Arterial injury in wild type C57Bl6 mice resulted in T cell activation characterized by increased CD4+CD44hi and CD8+CD44hi T cells in the lymph nodes and spleens. Splenic CD8+CD25+ T cells and CD8+CD28+ T cells, but not CD4+CD25+ and CD4+CD28+ T cells, were also significantly increased. Adoptive cell transfer of CD4+ or CD8+ T cells from donor CD8−/− or CD4−/− mice, respectively, to immune-deficient Rag-1−/− mice was performed to determine the T cell subtype that inhibits neointima formation after arterial injury. Rag-1−/− mice that received CD8+ T cells had significantly reduced neointima formation compared with Rag-1−/− mice without cell transfer. CD4+ T cell transfer did not reduce neointima formation. CD8+ T cells from CD4−/− mice had cytotoxic activity against syngeneic smooth muscle cells in vitro. The study shows that although both CD8+ T cells and CD4+ T cells are activated in response to arterial injury, adoptive cell transfer identifies CD8+ T cells as the specific and selective cell type involved in inhibiting neointima formation

    Green Tea Polyphenols Rescue of Brain Defects Induced by Overexpression of DYRK1A

    Get PDF
    Individuals with partial HSA21 trisomies and mice with partial MMU16 trisomies containing an extra copy of the DYRK1A gene present various alterations in brain morphogenesis. They present also learning impairments modeling those encountered in Down syndrome. Previous MRI and histological analyses of a transgenic mice generated using a human YAC construct that contains five genes including DYRK1A reveal that DYRK1A is involved, during development, in the control of brain volume and cell density of specific brain regions. Gene dosage correction induces a rescue of the brain volume alterations. DYRK1A is also involved in the control of synaptic plasticity and memory consolidation. Increased gene dosage results in brain morphogenesis defects, low BDNF levels and mnemonic deficits in these mice. Epigallocatechin gallate (EGCG) — a member of a natural polyphenols family, found in great amount in green tea leaves — is a specific and safe DYRK1A inhibitor. We maintained control and transgenic mice overexpressing DYRK1A on two different polyphenol-based diets, from gestation to adulthood. The major features of the transgenic phenotype were rescued in these mice

    Immunomodulation of atherosclerosis with a vaccine

    No full text
    Experimental observations have established that the innate and adaptive immune mechanisms both have roles in the modulation of atherosclerosis. The complex function that the immune system has in the pathophysiology of atherosclerosis is highlighted by the fact that both proatherogenic and atheroprotective effects of immune activation can be demonstrated. An immune response to the protein and lipid components of oxidized LDL cholesterol has been observed in experimental models, and immunization with these antigens has generally reduced atherosclerosis. The findings suggest the tantalizing possibility that an atheroprotective vaccine can be developed. Our laboratories have identified several antigenic epitopes in the human apolipoprotein B 100 component of LDL cholesterol. Active immunization with some of these epitopes has reduced atherosclerosis in hyperlipidemic mice. We believe, therefore, that a vaccine based on apolipoprotein B100-related peptide could have a role in reducing atherosclerosis. In this review, we discuss the possible immunologic mechanisms by Which vaccines against atherosclerosis might work and the ways in which such treatment might be most effectively administered

    Altered AP-1/Ref-1 redox pathway and reduced proliferative response in iNOS-deficient vascular smooth muscle cells

    No full text
    We previously reported that injury-induced medial vascular smooth muscle cell (VSMC) proliferation and neointima formation in carotid arteries of inducible nitric oxide synthase knockout ( iNOS KO) mice were significantly reduced compared with wild type (WT). However, the molecular pathway underlying such differences is not known. In this in vitro study, we discovered that the AP-1/Ref-1/thioredoxin signaling pathway is altered in aortic VSMC from iNOS KO mice, which leads to reduced growth response when compared with aortic VSMC from WT mice. After equal initial seeding, the cell number after 7 days in serum medium was less in iNOS KO cells compared with WT VSMC (1.2 +/- 0.6 x 10(5) vs 3.2 +/- 1.1 x 10(5); p < 0.05). Significantly more iNOS KO cells remained in the G0/G1 phase compared with WT cells after 24-h serum treatment (82.6 +/- 13.7% vs 62.3 +/- 14.6%; p < 0.05) by cell-cycle analysis. Nuclear PCNA expression was also less in the iNOS KO cells, which was not affected by exogenous NO or superoxide. Superoxide generation after 24-h serum stimulation was less in the iNOS KO cells compared with WT cells. After 30-min serum stimulation, AP-1 DNA binding was reduced and a lack of increase in nuclear c-Jun protein was observed in iNOS KO VSMC. RT-PCR analysis confirmed a lack of inducible c-Jun mRNA after serum stimulation in the KO cells. In addition, KO cells had less nuclear reducing factor-1 (Ref-1) and serum-inducible thioredoxin protein expression. Reduced proliferative response of iNOS KO VSMC to serum treatment is associated with altered AP-1/Ref-1/thioredoxin pathway activation

    Timing affects the efficacy of LDL immunization on atherosclerotic lesions in apo E (-/-) mice

    No full text
    Background: Immunization of animals with LDL reduces atherosclerosis. However, whether the timing of immunization affects its efficacy is not known. In this study, we evaluated the influence of timing of immunization on the athero-protective effects of LDL immunization in apo E (-/-) mice. Methods and results: Hypercholesterolemic apo E (-/-) mice were immunized with native LDL (nLDL) at age of 6-7 weeks old or at 20 weeks old. Compared to adjuvant group, mice that were immunized at the age of 6-7 weeks developed significantly smaller aortic sinus plaques with reduced gelatinolytic activity and increased collagen content. This was associated with an increase of oxidized LDL (oxLDL) antibody titer and a marked decrease in splenic IL-4 mRNA expression. Immunization at 20 weeks of age also increased oxLDL antibody titer but did not reduce plaque size, gelatinolytic activity or collagen content but resulted in a modest decrease in macrophage infiltration. Late immunization did not alter splenic IL-4 mRNA expression. Conclusions: Our findings demonstrate that, only early nLDL immunization modulates humoral and cellular immune responses and affects plaques size and composition in apo E (-/-) mice, indicating the critical importance of timing of immunization for its antiatherogenic efficacy. (C) 2004 Elsevier Ireland Ltd. All rights reserved
    • …
    corecore