28 research outputs found

    Advances of genomic science and systems biology in renal transplantation: a review

    Get PDF
    The diagnosis of rejection in kidney transplant patients is based on histologic classification of a graft biopsy. The current “gold standard” is the Banff 97 criteria; however, there are several limitations in classifying rejection based on biopsy samples. First, a biopsy involves an invasive procedure. Second, there is significant variance among blinded pathologists in the interpretation of a biopsy. And third, there is also variance between the histology and the molecular profiles of a biopsy. To increase the positive predictive value of classifiers of rejection, a Banff committee is developing criteria that integrate histologic and molecular data into a unified classifier that could diagnose and prognose rejection. To develop the most appropriate molecular criteria, there have been studies by multiple groups applying omics technologies in attempts to identify biomarkers of rejection. In this review, we discuss studies using genome-wide data sets of the transcriptome and proteome to investigate acute rejection, chronic allograft dysfunction, and tolerance. We also discuss studies which focus on genetic biomarkers in urine and peripheral blood, which will provide clinicians with minimally invasive methods for monitoring transplant patients. We also discuss emerging technologies, including whole-exome sequencing and RNA-Seq and new bioinformatic and systems biology approaches, which should increase the ability to develop both biomarkers and mechanistic understanding of the rejection process

    Molecular Pathogenesis of Post-Transplant Acute Kidney Injury: Assessment of Whole-Genome mRNA and MiRNA Profiles.

    Get PDF
    Acute kidney injury (AKI) affects roughly 25% of all recipients of deceased donor organs. The prevention of post-transplant AKI is still an unmet clinical need. We prospectively collected zero-hour, indication as well as protocol kidney biopsies from 166 allografts between 2011 and 2013. In this cohort eight cases with AKI and ten matched allografts without pathology serving as control group were identified with a follow-up biopsy within the first twelve days after engraftment. For this set the zero-hour and follow-up biopsies were subjected to genome wide microRNA and mRNA profiling and analysis, followed by validation in independent expression profiles of 42 AKI and 21 protocol biopsies for strictly controlling the false discovery rate. Follow-up biopsies of AKI allografts compared to time-matched protocol biopsies, further baseline adjustment for zero-hour biopsy expression level and validation in independent datasets, revealed a molecular AKI signature holding 20 mRNAs and two miRNAs (miR-182-5p and miR-21-3p). Next to several established biomarkers such as lipocalin-2 also novel candidates of interest were identified in the signature. In further experimental evaluation the elevated transcript expression level of the secretory leukocyte peptidase inhibitor (SLPI) in AKI allografts was confirmed in plasma and urine on the protein level (p<0.001 and p = 0.003, respectively). miR-182-5p was identified as a molecular regulator of post-transplant AKI, strongly correlated with global gene expression changes during AKI. In summary, we identified an AKI-specific molecular signature providing the ground for novel biomarkers and target candidates such as SLPI and miR-182-5p in addressing AKI

    A quantitative systems view of the spindle assembly checkpoint

    Get PDF
    The idle assembly checkpoint acts to delay chromosome segregation until all duplicated sister chromatids are captured by the mitotic spindle. This pathway ensures that each daughter cell receives a complete copy of the genome. The high fidelity and robustness of this process have made it a subject of intense study in both the experimental and computational realms. A significant number of checkpoint proteins have been identified but how they orchestrate the communication between local spindle attachment and global cytoplasmic signalling to delay segregation is not yet understood. Here, we propose a systems view of the spindle assembly checkpoint to focus attention on the key regulators of the dynamics of this pathway. These regulators in turn have been the subject of detailed cellular measurements and computational modelling to connect molecular function to the dynamics of spindle assembly checkpoint signalling. A review of these efforts reveals the insights provided by such approaches and underscores the need for further interdisciplinary studies to reveal in full the quantitative underpinnings of this cellular control pathway

    In praise of arrays

    Get PDF
    Microarray technologies have both fascinated and frustrated the transplant community since their introduction roughly a decade ago. Fascination arose from the possibility offered by the technology to gain a profound insight into the cellular response to immunogenic injury and the potential that this genomic signature would be indicative of the biological mechanism by which that stress was induced. Frustrations have arisen primarily from technical factors such as data variance, the requirement for the application of advanced statistical and mathematical analyses, and difficulties associated with actually recognizing signature gene-expression patterns and discerning mechanisms. To aid the understanding of this powerful tool, its versatility, and how it is dramatically changing the molecular approach to biomedical and clinical research, this teaching review describes the technology and its applications, as well as the limitations and evolution of microarrays, in the field of organ transplantation. Finally, it calls upon the attention of the transplant community to integrate into multidisciplinary teams, to take advantage of this technology and its expanding applications in unraveling the complex injury circuits that currently limit transplant survival
    corecore