280 research outputs found
Validation of Platelet Counting Accuracy With the Celltac F Automated Hematology Analyzer
Rapid and accurate analysis of platelet count plays an important role in evaluating hemorrhagic status. Therefore, we evaluated platelet counting performance of a hematology analyzer, Celltac F (MEK-8222, Nihon Kohden Corporation, Tokyo, Japan), that
features easy use with low reagent consumption and high throughput while occupying minimal space in the clinical laboratory. All blood samples were anticoagulated with dipotassium ethylenediaminetetraacetic acid (EDTA-2K). The samples were stored
at room temperature (18^C–22^C) and tested within 4 hours of phlebotomy. We evaluated the counting ability of the Celltac F hematology analyzer by comparing it with the platelet counts obtained by the flow cytometry method that ISLH and ICSH recommended, and also the manual visual method by Unopette (Becton Dickinson Vacutainer Systems). The ICSH/ISLH reference method is based on the fact that platelets can be stained with monoclonal antibodies to CD41 and/or CD61. The dilution ratio was optimized after the precision, coincidence events, and debris counts were confirmed by the reference method. Good correlation of platelet count between the Celltac F and the ICSH/ISLH reference method (r = 0.99, and the manual visual method (r= 0.93) were obtained. The regressions were y = 0.90 x+9.0 and y=1.11x+8.4, respectively. We conclude that the Celltac F hematology analyzer for platelet counting was well suited to the ICSH/ISLH reference method for rapidness and reliability
Low-rank constrained multichannel signal denoising considering channel-dependent sensitivity inspired by self-supervised learning for optical fiber sensing
Optical fiber sensing is a technology wherein audio, vibrations, and
temperature are detected using an optical fiber; especially the
audio/vibrations-aware sensing is called distributed acoustic sensing (DAS). In
DAS, observed data, which is comprised of multichannel data, has suffered from
severe noise levels because of the optical noise or the installation methods.
In conventional methods for denoising DAS data, signal-processing- or
deep-neural-network (DNN)-based models have been studied. The
signal-processing-based methods have the interpretability, i.e., non-black box.
The DNN-based methods are good at flexibility designing network architectures
and objective functions, that is, priors. However, there is no balance between
the interpretability and the flexibility of priors in the DAS studies. The
DNN-based methods also require a large amount of training data in general. To
address the problems, we propose a DNN-structure signal-processing-based
denoising method in this paper. As the priors of DAS, we employ spatial
knowledge; low rank and channel-dependent sensitivity using the DNN-based
structure. The result of fiber-acoustic sensing shows that the proposed method
outperforms the conventional methods and the robustness to the number of the
spatial ranks. Moreover, the optimized parameters of the proposed method
indicate the relationship with the channel sensitivity; the interpretability.Comment: Accepted for ICASSP202
ペルオキシソーム増殖因子活性化受容体アルファノックアウトマウスの絶食時における睡眠変化
Peroxisome proliferator-activated receptor alpha (PPARα) is a transcription factor that belongs to the nuclear receptor family and plays an important role in regulating gene expression associated with lipid metabolism. PPARα promotes hepatic fatty acid oxidation and ketogenesis in response to fasting. Because energy metabolism is known to affect sleep regulation, manipulations that change PPARα are likely to affect sleep and other physiological phenotypes. In this study, we examined the role of PPARα in sleep/wake regulation using PPARα knockout (KO) mice. Sleep, body temperature (BT), locomotor activity, arterial pressure (AP) and heart rate (HR) were recorded in KO mice and wild-type (WT) controls under ad libitum-fed conditions and 24-hour food deprivation (FD). KO and WT mice were identical in basal sleep amount, BT, mean AP and HR, although KO mice showed enhanced sleepiness (enhanced EEG slow-wave activity). In response to FD, KO mice showed a large drop in wakefulness and locomotor activity at the end of the dark phase, whereas WT mice did not. Similarly, AP and HR, which were suppressed by FD, decreased more in KO than in WT mice. Compared to WT mice, KO mice showed a reduced concentration of plasma ketone bodies and decreased mRNA expression of the ketogenic enzyme gene Hmgcs2 in the liver and brain under FD conditions. These results suggest that PPARα and/or lipid metabolism is involved in the maintenance of wakefulness and locomotor activity during fasting in mice
Regulated interaction between polypeptide chain elongation factor-1 complex with the 26S proteasome during Xenopus oocyte maturation
BACKGROUND: During Xenopus oocyte maturation, the amount of a 48 kDa protein detected in the 26S proteasome fraction (p48) decreased markedly during oocyte maturation to the low levels seen in unfertilized eggs. The results indicate that the interaction of at least one protein with the 26S proteasome changes during oocyte maturation and early development. An alteration in proteasome function may be important for the regulation of developmental events, such as the rapid cell cycle, in the early embryo. In this study, we identified p48. RESULTS: p48 was purified by conventional column chromatography. The resulting purified fraction contained two other proteins with molecular masses of 30 (p30) and 37 (p37) kDa. cDNAs encode elongation factor-1γ and δ were obtained by an immuno-screening method using polyclonal antibodies against purified p48 complex, which recognized p48 and p37. N-terminal amino acid sequence analysis of p30 revealed that it was identical to EF-1β. To identify the p48 complex bound to the 26S proteasome as EF-1βγδ, antibodies were raised against the components of purified p48 complex. Recombinant EF-1 β,γ and δ were expressed in Escherichia coli, and an antibody was raised against purified recombinant EF-1γ. Cross-reactivity of the antibodies toward the p48 complex and recombinant proteins showed it to be specific for each component. These results indicate that the p48 complex bound to the 26S proteasome is the EF-1 complex. MPF phosphorylated EF-1γ was shown to bind to the 26S proteasome. When EF-1γ is phosphorylated by MPF, the association is stabilized. CONCLUSION: p48 bound to the 26S proteasome is identified as the EF-1γ. EF-1 complex is associated with the 26S proteasome in Xenopus oocytes and the interaction is stabilized by MPF-mediated phosphorylation
Enhancement of astaxanthin production in Xanthophyllomyces dendrorhous by efficient method for the complete deletion of genes
Additional file 1. DNA seuence of primers used in this study
- …