124 research outputs found

    Characterization of primary neurospheres generated from mouse ventral rostral hindbrain

    Get PDF
    Serotonergic (5-HT) neurons of the reticular formation play a key role in the modulation of behavior, and their dysfunction is associated with severe neurological and psychiatric disorders, such as depression and schizophrenia. However, the molecular mechanisms underlying the differentiation of the progenitor cells and the specification of the 5-HT phenotype are not fully understood. A primary neurosphere cell-culture system from mouse ventral rostral hindbrain at embryonic day 12 was therefore established. The generated primary neurospheres comprised progenitor cells and fully differentiated neurons. Bromodeoxyuridine incorporation experiments in combination with immunocytochemistry for neural markers revealed the proliferation capacity of the neural multipotent hindbrain progenitors within neurospheres and their ability to differentiate toward the neuronal lineage and serotonergic phenotype. Gene expression analysis by reverse transcription with the polymerase chain reaction showed that the neurospheres were regionally specified, as reflected by the expression of the transcription factors Gata2 and Pet1. Treatment of dissociated primary neurospheres with exogenous Shh significantly increased the number of 5-HT-immunopositive cells compared with controls, whereas neutralization of endogenous Shh significantly decreased the number of 5-HT neurons. Thus, the primary neurosphere culture system presented here allows the expansion of hindbrain progenitor cells and the experimental control of their differentiation toward the serotonergic phenotype. This culture system is therefore a useful model for in vitro studies dealing with the development of 5-HT neurons

    The E. coli Anti-Sigma Factor Rsd: Studies on the Specificity and Regulation of Its Expression

    Get PDF
    Background: Among the seven different sigma factors in E. coli s 70 has the highest concentration and affinity for the core RNA polymerase. The E. coli protein Rsd is regarded as an anti-sigma factor, inhibiting s 70-dependent transcription at the onset of stationary growth. Although binding of Rsd to s 70 has been shown and numerous structural studies on Rsd have been performed the detailed mechanism of action is still unknown. Methodology/Principal Findings: We have performed studies to unravel the function and regulation of Rsd expression in vitro and in vivo. Cross-linking and affinity binding revealed that Rsd is able to interact with s 70, with the core enzyme of RNA polymerase and is able to form dimers in solution. Unexpectedly, we find that Rsd does also interact with s 38, the stationary phase-specific sigma factor. This interaction was further corroborated by gel retardation and footprinting studies with different promoter fragments and s 38-ors 70-containing RNA polymerase in presence of Rsd. Under competitive in vitro transcription conditions, in presence of both sigma factors, a selective inhibition of s 70-dependent transcription was prevailing, however. Analysis of rsd expression revealed that the nucleoid-associated proteins H-NS and FIS, StpA and LRP bind to the regulatory region of the rsd promoters. Furthermore, the major promoter P2 was shown to be down-regulated in vivo by RpoS, the stationary phase-specific sigma factor and the transcription factor DksA, while induction of the stringent control enhanced rsd promoter activity. Most notably, the dam-dependent methylation of a cluster of GATC sites turned ou

    Identification and functional characterization of small non-coding RNAs in Xanthomonas oryzae pathovar oryzae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small non-coding RNAs (sRNAs) are regarded as important regulators in prokaryotes and play essential roles in diverse cellular processes. <it>Xanthomonas oryzae </it>pathovar <it>oryzae </it>(<it>Xoo</it>) is an important plant pathogenic bacterium which causes serious bacterial blight of rice. However, little is known about the number, genomic distribution and biological functions of sRNAs in <it>Xoo</it>.</p> <p>Results</p> <p>Here, we performed a systematic screen to identify sRNAs in the <it>Xoo </it>strain PXO99. A total of 850 putative non-coding RNA sequences originated from intergenic and gene antisense regions were identified by cloning, of which 63 were also identified as sRNA candidates by computational prediction, thus were considered as <it>Xoo </it>sRNA candidates. Northern blot hybridization confirmed the size and expression of 6 sRNA candidates and other 2 cloned small RNA sequences, which were then added to the sRNA candidate list. We further examined the expression profiles of the eight sRNAs in an <it>hfq </it>deletion mutant and found that two of them showed drastically decreased expression levels, and another exhibited an Hfq-dependent transcript processing pattern. Deletion mutants were obtained for seven of the Northern confirmed sRNAs, but none of them exhibited obvious phenotypes. Comparison of the proteomic differences between three of the ΔsRNA mutants and the wild-type strain by two-dimensional gel electrophoresis (2-DE) analysis showed that these sRNAs are involved in multiple physiological and biochemical processes.</p> <p>Conclusions</p> <p>We experimentally verified eight sRNAs in a genome-wide screen and uncovered three Hfq-dependent sRNAs in <it>Xoo</it>. Proteomics analysis revealed <it>Xoo </it>sRNAs may take part in various metabolic processes. Taken together, this work represents the first comprehensive screen and functional analysis of sRNAs in rice pathogenic bacteria and facilitates future studies on sRNA-mediated regulatory networks in this important phytopathogen.</p

    Deep sequencing reveals as-yet-undiscovered small RNAs in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In <it>Escherichia coli</it>, approximately 100 regulatory small RNAs (sRNAs) have been identified experimentally and many more have been predicted by various methods. To provide a comprehensive overview of sRNAs, we analysed the low-molecular-weight RNAs (< 200 nt) of <it>E. coli </it>with deep sequencing, because the regulatory RNAs in bacteria are usually 50-200 nt in length.</p> <p>Results</p> <p>We discovered 229 novel candidate sRNAs (≥ 50 nt) with computational or experimental evidence of transcription initiation. Among them, the expression of seven intergenic sRNAs and three <it>cis</it>-antisense sRNAs was detected by northern blot analysis. Interestingly, five novel sRNAs are expressed from prophage regions and we note that these sRNAs have several specific characteristics. Furthermore, we conducted an evolutionary conservation analysis of the candidate sRNAs and summarised the data among closely related bacterial strains.</p> <p>Conclusions</p> <p>This comprehensive screen for <it>E. coli </it>sRNAs using a deep sequencing approach has shown that many as-yet-undiscovered sRNAs are potentially encoded in the <it>E. coli </it>genome. We constructed the <it>Escherichia coli </it>Small RNA Browser (ECSBrowser; <url>http://rna.iab.keio.ac.jp/</url>), which integrates the data for previously identified sRNAs and the novel sRNAs found in this study.</p

    A Genome-Wide Identification Analysis of Small Regulatory RNAs in Mycobacterium tuberculosis by RNA-Seq and Conservation Analysis

    Get PDF
    We propose a new method for smallRNAs (sRNAs) identification. First we build an effective target genome (ETG) by means of a strand-specific procedure. Then we propose a new bioinformatic pipeline based mainly on the combination of two types of information: the first provides an expression map based on RNA-seq data (Reads Map) and the second applies principles of comparative genomics leading to a Conservation Map. By superimposing these two maps, a robust method for the search of sRNAs is obtained. We apply this methodology to investigate sRNAs in Mycobacterium tuberculosis H37Rv. This bioinformatic procedure leads to a total list of 1948 candidate sRNAs. The size of the candidate list is strictly related to the aim of the study and to the technology used during the verification process. We provide performance measures of the algorithm in identifying annotated sRNAs reported in three recent published studies

    Function and Assembly of a Chromatin-Associated RNase P that Is Required for Efficient Transcription by RNA Polymerase I

    Get PDF
    Background: Human RNase P has been initially described as a tRNA processing enzyme, consisting of H1 RNA and at least ten distinct protein subunits. Recent findings, however, indicate that this catalytic ribonucleoprotein is also required for transcription of small noncoding RNA genes by RNA polymerase III (Pol III). Notably, subunits of human RNase P are localized in the nucleolus, thus raising the possibility that this ribonucleoprotein complex is implicated in transcription of rRNA genes by Pol I. Methodology/Principal Findings: By using biochemical and reverse genetic means we show here that human RNase P is required for efficient transcription of rDNA by Pol I. Thus, inactivation of RNase P by targeting its protein subunits for destruction by RNA interference or its H1 RNA moiety for specific cleavage causes marked reduction in transcription of rDNA by Pol I. However, RNase P restores Pol I transcription in a defined reconstitution system. Nuclear run on assays reveal that inactivation of RNase P reduces the level of nascent transcription by Pol I, and more considerably that of Pol III. Moreover, RNase P copurifies and associates with components of Pol I and its transcription factors and binds to chromatin of the promoter and coding region of rDNA. Strikingly, RNase P detaches from transcriptionally inactive rDNA in mitosis and reassociates with it at G1 phase through a dynamic and stepwise assembly process that is correlated with renewal of transcription

    Function and Assembly of a Chromatin-Associated RNase P that Is Required for Efficient Transcription by RNA Polymerase I

    Get PDF
    Human RNase P has been initially described as a tRNA processing enzyme, consisting of H1 RNA and at least ten distinct protein subunits. Recent findings, however, indicate that this catalytic ribonucleoprotein is also required for transcription of small noncoding RNA genes by RNA polymerase III (Pol III). Notably, subunits of human RNase P are localized in the nucleolus, thus raising the possibility that this ribonucleoprotein complex is implicated in transcription of rRNA genes by Pol I.By using biochemical and reverse genetic means we show here that human RNase P is required for efficient transcription of rDNA by Pol I. Thus, inactivation of RNase P by targeting its protein subunits for destruction by RNA interference or its H1 RNA moiety for specific cleavage causes marked reduction in transcription of rDNA by Pol I. However, RNase P restores Pol I transcription in a defined reconstitution system. Nuclear run on assays reveal that inactivation of RNase P reduces the level of nascent transcription by Pol I, and more considerably that of Pol III. Moreover, RNase P copurifies and associates with components of Pol I and its transcription factors and binds to chromatin of the promoter and coding region of rDNA. Strikingly, RNase P detaches from transcriptionally inactive rDNA in mitosis and reassociates with it at G1 phase through a dynamic and stepwise assembly process that is correlated with renewal of transcription.Our findings reveal that RNase P activates transcription of rDNA by Pol I through a novel assembly process and that this catalytic ribonucleoprotein determines the transcription output of Pol I and Pol III, two functionally coordinated transcription machineries

    Deletion of Porcn in Mice Leads to Multiple Developmental Defects and Models Human Focal Dermal Hypoplasia (Goltz Syndrome)

    Get PDF
    Focal Dermal Hypoplasia (FDH) is a genetic disorder characterized by developmental defects in skin, skeleton and ectodermal appendages. FDH is caused by dominant loss-of-function mutations in X-linked PORCN. PORCN orthologues in Drosophila and mice encode endoplasmic reticulum proteins required for secretion and function of Wnt proteins. Wnt proteins play important roles in embryo development, tissue homeostasis and stem cell maintenance. Since features of FDH overlap with those seen in mouse Wnt pathway mutants, FDH likely results from defective Wnt signaling but molecular mechanisms by which inactivation of PORCN affects Wnt signaling and manifestations of FDH remain to be elucidated.We introduced intronic loxP sites and a neomycin gene in the mouse Porcn locus for conditional inactivation. Porcn-ex3-7flox mice have no apparent developmental defects, but chimeric mice retaining the neomycin gene (Porcn-ex3-7Neo-flox) have limb, skin, and urogenital abnormalities. Conditional Porcn inactivation by EIIa-driven or Hprt-driven Cre recombinase results in increased early embryonic lethality. Mesenchyme-specific Prx-Cre-driven inactivation of Porcn produces FDH-like limb defects, while ectodermal Krt14-Cre-driven inactivation produces thin skin, alopecia, and abnormal dentition. Furthermore, cell-based assays confirm that human PORCN mutations reduce WNT3A secretion.These data indicate that Porcn inactivation in the mouse produces a model for human FDH and that phenotypic features result from defective WNT signaling in ectodermal- and mesenchymal-derived structures

    A Salmonella Small Non-Coding RNA Facilitates Bacterial Invasion and Intracellular Replication by Modulating the Expression of Virulence Factors

    Get PDF
    Small non-coding RNAs (sRNAs) that act as regulators of gene expression have been identified in all kingdoms of life, including microRNA (miRNA) and small interfering RNA (siRNA) in eukaryotic cells. Numerous sRNAs identified in Salmonella are encoded by genes located at Salmonella pathogenicity islands (SPIs) that are commonly found in pathogenic strains. Whether these sRNAs are important for Salmonella pathogenesis and virulence in animals has not been reported. In this study, we provide the first direct evidence that a pathogenicity island-encoded sRNA, IsrM, is important for Salmonella invasion of epithelial cells, intracellular replication inside macrophages, and virulence and colonization in mice. IsrM RNA is expressed in vitro under conditions resembling those during infection in the gastrointestinal tract. Furthermore, IsrM is found to be differentially expressed in vivo, with higher expression in the ileum than in the spleen. IsrM targets the mRNAs coding for SopA, a SPI-1 effector, and HilE, a global regulator of the expression of SPI-1 proteins, which are major virulence factors essential for bacterial invasion. Mutations in IsrM result in disregulation of expression of HilE and SopA, as well as other SPI-1 genes whose expression is regulated by HilE. Salmonella with deletion of isrM is defective in bacteria invasion of epithelial cells and intracellular replication/survival in macrophages. Moreover, Salmonella with mutations in isrM is attenuated in killing animals and defective in growth in the ileum and spleen in mice. Our study has shown that IsrM sRNA functions as a pathogenicity island-encoded sRNA directly involved in Salmonella pathogenesis in animals. Our results also suggest that sRNAs may represent a distinct class of virulence factors that are important for bacterial infection in vivo
    corecore