9 research outputs found

    Toxicity profile of bevacizumab in the UK Neurofibromatosis Type 2 cohort

    Get PDF
    Bevacizumab is considered an established part of the treatment strategies available for schwannomas in patients with Neurofibromatosis Type 2(NF2). In the UK, it is available through NHS National Specialized Commissioning to NF2 patients with a rapidly growing target schwannoma. Regrowth of the tumour on suspension of treatment is often observed resulting in prolonged periods of exposure to bevacizumab to control the disease. Hypertension and proteinuria are common events with bevacizumab use and there are concerns with regards to the long-term risks of prolonged treatment. Dosing, demographic and adverse event(CTCAE 4.03) data from the UK NF2 bevacizumab cohort are reviewed with particular consideration of renal and cardiovascular complications. Eighty patients (48 male:32female), median age 24.5 years (range 11-66years), were followed for a median of 32.7 months (range 12.0–60.2months). The most common adverse events were fatigue, hypertension and infection. A total of 19/80 patients (24%) had either a grade 2 or grade 3 hypertension event and 14/80 patients (17.5%) had proteinuria. Of 36 patients followed for 36 months, 78% were free from hypertension and 86% were free of proteinuria. Logistic regression modeling identified age and induction dosing regime to be predictors of development of hypertension with dose of 7.5mg/kg three weekly and age >30years having higher rates of hypertension. Proteinuria persisted in one of three patients after cessation of bevacizumab. One patient developed congestive heart failure and the details of this case are described. Further work is needed to determine optimal dosing regimes to limit toxicity without impacting on efficacy

    Phase II study of mTORC1 inhibition by everolimus in neurofibromatosis type 2 patients with growing vestibular schwannomas

    Full text link
    Neurofibromatosis type 2 (NF2) is a genetic disorder with bilateral vestibular schwannomas (VS) as the most frequent manifestation. Merlin, the NF2 tumor suppressor, was identified as a negative regulator of mammalian target of rapamycin complex 1. Pre-clinical data in mice showed that mTORC1 inhibition delayed growth of NF2-schwannomas. We conducted a prospective single-institution open-label phase II study to evaluate the effects of everolimus in ten NF2 patients with progressive VS. Drug activity was monitored every 3 months. Everolimus was administered orally for 12 months and, if the decrease in tumor volume was >20 % from baseline, treatment was continued for 12 additional months. Other patients stopped when completed 12 months of everolimus but were allowed to resume treatment when VS volume was >20 % during 1 year follow-up. Nine patients were evaluable. Safety was evaluated using CTCAE 3.0 criteria. After 12 months of everolimus, no reduction in volume ≥20 % was observed. Four patients had progressive disease, and five patients had stable disease with a median annual growth rate decreasing from 67 %/year before treatment to 0.5 %/year during treatment. In these patients, tumor growth resumed within 3-6 months after treatment discontinuation. Everolimus was then reintroduced and VS decreased by a median 6.8 % at 24 months. Time to tumor progression increased threefold from 4.2 months before treatment to > 12 months. Hearing was stable under treatment. The safety of everolimus was manageable. Although the primary endpoint was not reached, further studies are required to confirm the potential for stabilization of everolimus

    Frequent Gene Products and Molecular Pathways Altered in Prostate Cancer– and Metastasis-Initiating Cells and Their Progenies and Novel Promising Multitargeted Therapies

    No full text
    Recent gene expression profiling analyses and gain- and loss-of-function studies performed with distinct prostate cancer (PC) cell models indicated that the alterations in specific gene products and molecular pathways often occur in PC stem/progenitor cells and their progenies during prostate carcinogenesis and metastases at distant sites, including bones. Particularly, the sustained activation of epidermal growth factor receptor (EGFR), hedgehog, Wnt/β-catenin, Notch, hyaluronan (HA)/CD44 and stromal cell–derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) during the epithelial-mesenchymal transition (EMT) process may provide critical functions for PC progression to locally invasive, metastatic and androgen-independent disease states and treatment resistance. Moreover, an enhanced glycolytic metabolism in PC stem/progenitor cells and their progenies concomitant with the changes in their local microenvironment, including the induction of tumor hypoxia and release of diverse soluble factors by tumor myofibroblasts, also may promote the tumor growth, angiogenesis and metastases. More particularly, these molecular transforming events may cooperate to upregulate Akt, nuclear factor (NF)-κB, hypoxia-inducible factors (HIFs) and stemness gene products such as Oct3/4, Sox2, Nanog and Bmi-1 in PC cells that contribute to their acquisition of high self-renewal, tumorigenic and invasive capacities and survival advantages during PC progression. Consequently, the molecular targeting of these deregulated gene products in the PC- and metastasis-initiating cells and their progenies represent new promising therapeutic strategies of great clinical interest for eradicating the total PC cell mass and improving current antihormonal treatments and docetaxel-based chemotherapies, thereby preventing disease relapse and the death of PC patients
    corecore