9 research outputs found
Secular Evolution of Galaxy Morphologies
Today we have numerous evidences that spirals evolve dynamically through
various secular or episodic processes, such as bar formation and destruction,
bulge growth and mergers, sometimes over much shorter periods than the standard
galaxy age of 10-15 Gyr. This, coupled to the known properties of the Hubble
sequence, leads to a unique sense of evolution: from Sm to Sa. Linking this to
the known mass components provides new indications on the nature of dark matter
in galaxies. The existence of large amounts of yet undetected dark gas appears
as the most natural option. Bounds on the amount of dark stars can be given
since their formation is mostly irreversible and requires obviously a same
amount of gas.Comment: 8 pages, Latex2e, crckapb.sty macros, 1 Postscript figure, replaced
with TeX source; To be published in the proceeedings of the "Dust-Morphology"
conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer
Dordrecht
Experimental traumatic brain injury
Traumatic brain injury, a leading cause of death and disability, is a result of an outside force causing mechanical disruption of brain tissue and delayed pathogenic events which collectively exacerbate the injury. These pathogenic injury processes are poorly understood and accordingly no effective neuroprotective treatment is available so far. Experimental models are essential for further clarification of the highly complex pathology of traumatic brain injury towards the development of novel treatments. Among the rodent models of traumatic brain injury the most commonly used are the weight-drop, the fluid percussion, and the cortical contusion injury models. As the entire spectrum of events that might occur in traumatic brain injury cannot be covered by one single rodent model, the design and choice of a specific model represents a major challenge for neuroscientists. This review summarizes and evaluates the strengths and weaknesses of the currently available rodent models for traumatic brain injury
