8,758 research outputs found

    Exploration of the MSSM with Non-Universal Higgs Masses

    Get PDF
    We explore the parameter space of the minimal supersymmetric extension of the Standard Model (MSSM), allowing the soft supersymmetry-breaking masses of the Higgs multiplets, m_{1,2}, to be non-universal (NUHM). Compared with the constrained MSSM (CMSSM) in which m_{1,2} are required to be equal to the soft supersymmetry-breaking masses m_0 of the squark and slepton masses, the Higgs mixing parameter mu and the pseudoscalar Higgs mass m_A, which are calculated in the CMSSM, are free in the NUHM model. We incorporate accelerator and dark matter constraints in determining allowed regions of the (mu, m_A), (mu, M_2) and (m_{1/2}, m_0) planes for selected choices of the other NUHM parameters. In the examples studied, we find that the LSP mass cannot be reduced far below its limit in the CMSSM, whereas m_A may be as small as allowed by LEP for large tan \beta. We present in Appendices details of the calculations of neutralino-slepton, chargino-slepton and neutralino-sneutrino coannihilation needed in our exploration of the NUHM.Comment: 92 pages LaTeX, 32 eps figures, final version, some changes to figures pertaining to the b to s gamma constrain

    Accelerator Constraints on Neutralino Dark Matter

    Get PDF
    The constraints on neutralino dark matter \chi obtained from accelerator searches at LEP, the Fermilab Tevatron and elsewhere are reviewed, with particular emphasis on results from LEP 1.5. These imply within the context of the minimal supersymmetric extension of the Standard Model that m_\chi \ge 21.4 GeV if universality is assumed, and yield for large tan\beta a significantly stronger bound than is obtained indirectly from Tevatron limits on the gluino mass. We update this analysis with preliminary results from the first LEP 2W run, and also preview the prospects for future sparticle searches at the LHC.Comment: Presented by J. Ellis at the Workshop on the Identification of Dark Matter, Sheffield, September, 1996. 14 pages; Latex; 12 Fig

    Orthotropic rotation-free thin shell elements

    Full text link
    A method to simulate orthotropic behaviour in thin shell finite elements is proposed. The approach is based on the transformation of shape function derivatives, resulting in a new orthogonal basis aligned to a specified preferred direction for all elements. This transformation is carried out solely in the undeformed state leaving minimal additional impact on the computational effort expended to simulate orthotropic materials compared to isotropic, resulting in a straightforward and highly efficient implementation. This method is implemented for rotation-free triangular shells using the finite element framework built on the Kirchhoff--Love theory employing subdivision surfaces. The accuracy of this approach is demonstrated using the deformation of a pinched hemispherical shell (with a 18{\deg} hole) standard benchmark. To showcase the efficiency of this implementation, the wrinkling of orthotropic sheets under shear displacement is analyzed. It is found that orthotropic subdivision shells are able to capture the wrinkling behavior of sheets accurately for coarse meshes without the use of an additional wrinkling model.Comment: 10 pages, 8 figure

    Rheological Model for Wood

    Full text link
    Wood as the most important natural and renewable building material plays an important role in the construction sector. Nevertheless, its hygroscopic character basically affects all related mechanical properties leading to degradation of material stiffness and strength over the service life. Accordingly, to attain reliable design of the timber structures, the influence of moisture evolution and the role of time- and moisture-dependent behaviors have to be taken into account. For this purpose, in the current study a 3D orthotropic elasto-plastic, visco-elastic, mechano-sorptive constitutive model for wood, with all material constants being defined as a function of moisture content, is presented. The corresponding numerical integration approach, with additive decomposition of the total strain is developed and implemented within the framework of the finite element method (FEM). Moreover to preserve a quadratic rate of asymptotic convergence the consistent tangent operator for the whole model is derived. Functionality and capability of the presented material model are evaluated by performing several numerical verification simulations of wood components under different combinations of mechanical loading and moisture variation. Additionally, the flexibility and universality of the introduced model to predict the mechanical behavior of different species are demonstrated by the analysis of a hybrid wood element. Furthermore, the proposed numerical approach is validated by comparisons of computational evaluations with experimental results.Comment: 37 pages, 13 figures, 10 table
    corecore