3,321 research outputs found
Optimal discrimination of quantum operations
We address the problem of discriminating with minimal error probability two
given quantum operations. We show that the use of entangled input states
generally improves the discrimination. For Pauli channels we provide a complete
comparison of the optimal strategies where either entangled or unentangled
input states are used.Comment: 4 pages, no figure
Superconductivity and magnetic order in the non-centrosymmetric Half Heusler compound ErPdBi
We report superconductivity at K and magnetic order at K in the semi-metallic noncentrosymmetric Half Heusler compound ErPdBi.
The upper critical field, , has an unusual quasi-linear temperature
variation and reaches a value of 1.6 T for . Magnetic order is
found below and is suppressed at T for . Since , the interaction of superconductivity and magnetism
is expected to give rise to a complex ground state. Moreover, electronic
structure calculations show ErPdBi has a topologically nontrivial band
inversion and thus may serve as a new platform to study the interplay of
topological states, superconductivity and magnetic order.Comment: 6 pages, 5 figures; accepted for publication in Europhysics Letter
Microwave Tomographic Imaging Utilizing Low-Profile, Rotating, Right Angle-Bent Monopole Antennas
We have developed a simple mechanism incorporating feedline bends and rotary joints to enable motion of a monopole antenna within a liquid-based illumination chamber for tomographic imaging. The monopole is particularly well suited for this scenario because of its small size and simplicity. For the application presented here a full set of measurement data is collected from most illumination and receive directions utilizing only a pair of antennas configured with the rotating fixture underneath the imaging tank. Alternatively, the concept can be adapted for feed structures entering the tank from the sides to allow for measurements with vertically and horizontally polarized antennas. This opens the door for more advanced imaging applications where anisotropy could play an important role such as in bone imaging
Dynamics of Metal Centers Monitored by Nuclear Inelastic Scattering
Nuclear inelastic scattering of synchrotron radiation has been used now since
10 years as a tool for vibrational spectroscopy. This method has turned out
especially useful in case of large molecules that contain a M\"ossbauer active
metal center. Recent applications to iron-sulfur proteins, to iron(II) spin
crossover complexes and to tin-DNA complexes are discussed. Special emphasis is
given to the combination of nuclear inelastic scattering and density functional
calculations
Tsirelson's problem and Kirchberg's conjecture
Tsirelson's problem asks whether the set of nonlocal quantum correlations
with a tensor product structure for the Hilbert space coincides with the one
where only commutativity between observables located at different sites is
assumed. Here it is shown that Kirchberg's QWEP conjecture on tensor products
of C*-algebras would imply a positive answer to this question for all bipartite
scenarios. This remains true also if one considers not only spatial
correlations, but also spatiotemporal correlations, where each party is allowed
to apply their measurements in temporal succession; we provide an example of a
state together with observables such that ordinary spatial correlations are
local, while the spatiotemporal correlations reveal nonlocality. Moreover, we
find an extended version of Tsirelson's problem which, for each nontrivial Bell
scenario, is equivalent to the QWEP conjecture. This extended version can be
conveniently formulated in terms of steering the system of a third party.
Finally, a comprehensive mathematical appendix offers background material on
complete positivity, tensor products of C*-algebras, group C*-algebras, and
some simple reformulations of the QWEP conjecture.Comment: 57 pages, to appear in Rev. Math. Phy
Dynamic behavior of magnetic avalanches in the spin-ice compound DyTiO
Avalanches of the magnetization, that is to say an abrupt reversal of the
magnetization at a given field, have been previously reported in the spin-ice
compound DyTiO. This out-of-equilibrium process, induced by
magneto-thermal heating, is quite usual in low temperature magnetization
studies. A key point is to determine the physical origin of the avalanche
process. In particular, in spin-ice compounds, the origin of the avalanches
might be related to the monopole physics inherent to the system. We have
performed a detailed study of the avalanche phenomena in three single crystals,
with the field oriented along the [111] direction, perpendicular to [111] and
along the [100] directions. We have measured the changing magnetization during
the avalanches and conclude that avalanches in spin ice are quite slow compared
to the avalanches reported in other systems such as molecular magnets. Our
measurements show that the avalanches trigger after a delay of about 500 ms and
that the reversal of the magnetization then occurs in a few hundreds of
milliseconds. These features suggest an unusual propagation of the reversal,
which might be due to the monopole motion. The avalanche fields seem to be
reproducible in a given direction for different samples, but they strongly
depend on the initial state of magnetization and on how the initial state was
achieved.Comment: 11 pages, 14 figure
Experimental Upper Bound on Superradiance Emission from Mn12 Acetate
We used a Josephson junction as a radiation detector to look for evidence of
the emission of electromagnetic radiation during magnetization avalanches in a
crystal assembly of Mn_12-Acetate. The crystal assembly exhibits avalanches at
several magnetic fields in the temperature range from 1.8 to 2.6 K with
durations of the order of 1 ms. Although a recent study shows evidence of
electromagnetic radiation bursts during these avalanches [J. Tejada, et al.,
Appl. Phys. Lett. {\bf 84}, 2373 (2004)], we were unable to detect any
significant radiation at well-defined frequencies. A control experiment with
external radiation pulses allows us to determine that the energy released as
radiation during an avalanche is less than 1 part in 10^4 of the total energy
released. In addition, our avalanche data indicates that the magnetization
reversal process does not occur uniformly throughout the sample.Comment: 4 RevTeX pages, 3 eps figure
Zum Einfluss der Fütterung von Leindotterpresskuchen auf die Mast- und Schlachtleistung von Broilern aus ökologischer Mast
False flax (Camelina sativa) is a very beneficial oil seed in organic plant production. Its added value could be enhanced by using the oil cake in animal nutrition, which is very interesting for organic feeding due to the demand of farm grown crude protein and energy delivering plants. But European feed law does not allow such an use. An application for an amendment of the ordinance only seems promising, if it is possible to make a scientifically based proposal concerning the unproblematic amount of Camelina oil cake in the diet. Therefore in an organic feeding trial with a total of 192 broilers the effects of different amounts of Camelina oil cake (0%, 2.5%, 5% and 5% heat and pressure treated) in the diet concerning performance, carcass and meat quality were tested. The substitution of Camelina oil cake against soy cake till 5% caused inconsistent results concerning performance. Treated oil cake significantly caused poor performance and enlarged thyroid glands and livers. Carcass, meat, and fat quality remained unaffected. But anyway, a recommendation concerning the rea-sonable amount of Camelina oil cake in a broiler diet based on this single trial seems not feasible. Therefore further research has to be done
- …