4,834 research outputs found

    COBE Constraints on a Local group X-ray Halo

    Get PDF
    We investigate the effect of a putative X-ray emitting halo surrounding the Local Group of galaxies, and specifically the possible temperature anisotropies induced in the COBE-DMR four-year sky maps by an associated Sunyaev-Zel'dovich effect. By fitting the isothermal spherical halo model proposed by Suto et.al. (1996) to the coadded four-year COBE-DMR 53 and 90 GHz sky maps in Galactic coordinates, we find no significant evidence of a contribution. We therefore reject the claim that such a halo can affect the estimation of the primordial spectral index and amplitude of density perturbations as inferred from the DMR data. We find that correlation with the DMR data imposes constraints on the plausible contribution of such an X-ray emitting halo to a distortion in the CMB spectrum (as specified by the Compton-y parameter), up to a value for R -- the ratio of the core radius of the isothermal halo gas distribution to the distance to the Local Group centroid -- of 0.68. For larger values of R, the recent cosmological upper limit derived by COBE-FIRAS provides stronger constraints on the model parameters. Over the entire parameter space for R, we find an upper limit to the inferred sky-RMS anisotropy signal of 14 microKelvin (95% c.l.), a negligible amount relative to the 35 microKelvin signal observed in the COBE-DMR data.Comment: 4 pages, 3 figures; accepted for publication in MNRAS pink page

    The 4 Year COBE DMR data is non-Gaussian

    Get PDF
    I review our recent claim that there is evidence of non-Gaussianity in the 4 Year COBE DMR data. I describe the statistic we apply, the result we obtain and make a detailed list of the systematics we have analysed. I finish with a qualitative understanding of what it might be and its implications.Comment: Proceedings of Rome 3K conference, 5 pages, 3 figure

    Application of XFaster power spectrum and likelihood estimator to Planck

    Get PDF
    We develop the XFaster Cosmic Microwave Background (CMB) temperature and polarization anisotropy power spectrum and likelihood technique for the Planck CMB satellite mission. We give an overview of this estimator and its current implementation and present the results of applying this algorithm to simulated Planck data. We show that it can accurately extract the power spectrum of Planck data for the high-l multipoles range. We compare the XFaster approximation for the likelihood to other high-l likelihood approximations such as Gaussian and Offset Lognormal and a low-l pixel-based likelihood. We show that the XFaster likelihood is not only accurate at high-l, but also performs well at moderately low multipoles. We also present results for cosmological parameter Markov Chain Monte Carlo estimation with the XFaster likelihood. As long as the low-l polarization and temperature power are properly accounted for, e.g., by adding an adequate low-l likelihood ingredient, the input parameters are recovered to a high level of accuracy.Comment: 25 pages, 20 figures, updated to reflect published version: slightly extended account of XFaster technique, added improved plots and minor corrections. Accepted for publication in MNRA

    Asymmetries in the CMB anisotropy field

    Full text link
    We report on the results from two independent but complementary statistical analyses of the WMAP first-year data, based on the power spectrum and N-point correlation functions. We focus on large and intermediate scales (larger than about 3 degrees) and compare the observed data against Monte Carlo ensembles with WMAP-like properties. In both analyses, we measure the amplitudes of the large-scale fluctuations on opposing hemispheres and study the ratio of the two amplitudes. The power-spectrum analysis shows that this ratio for WMAP, as measured along the axis of maximum asymmetry, is high at the 95%-99% level (depending on the particular multipole range included). The axis of maximum asymmetry of the WMAP data is weakly dependent on the multipole range under consideration but tends to lie close to the ecliptic axis. In the N-point correlation function analysis we focus on the northern and southern hemispheres defined in ecliptic coordinates, and we find that the ratio of the large-scale fluctuation amplitudes is high at the 98%-99% level. Furthermore, the results are stable with respect to choice of Galactic cut and also with respect to frequency band. A similar asymmetry is found in the COBE-DMR map, and the axis of maximum asymmetry is close to the one found in the WMAP data.Comment: 6 pages, 5 figures; version to appear in ApJ, textual improvements, added reference

    A Bayesian estimate of the skewness of the Cosmic Microwave Background

    Get PDF
    We propose a formalism for estimating the skewness and angular power spectrum of a general Cosmic Microwave Background data set. We use the Edgeworth Expansion to define a non-Gaussian likelihood function that takes into account the anisotropic nature of the noise and the incompleteness of the sky coverage. The formalism is then applied to estimate the skewness of the publicly available 4 year Cosmic Background Explorer (COBE) Differential Microwave Radiometer data. We find that the data is consistent with a Gaussian skewness, and with isotropy. Inclusion of non Gaussian degrees of freedom has essentially no effect on estimates of the power spectrum, if each Câ„“C_\ell is regarded as a separate parameter or if the angular power spectrum is parametrized in terms of an amplitude (Q) and spectral index (n). Fixing the value of the angular power spectrum at its maxiumum likelihood estimate, the best fit skewness is S=6.5\pm6.0\times10^4(\muK)^3; marginalizing over Q the estimate of the skewness is S=6.5\pm8.4\times10^4(\muK)^3 and marginalizing over n one has S=6.5\pm8.5\times10^4(\muK)^3.Comment: submitted to Astrophysical Journal Letter
    • …
    corecore