104 research outputs found

    Laser phase noise effects on the dynamics of optomechanical resonators

    Full text link
    We investigate theoretically the influence of laser phase noise on the cooling and heating of a generic cavity optomechanical system. We derive the back-action damping and heating rates and the mechanical frequency shift of the radiation pressure-driven oscillating mirror, and derive the minimum phonon occupation number for small laser linewidths. We find that in practice laser phase noise does not pose serious limitations to ground state cooling. We then consider the effects of laser phase noise in a parametric cavity driving scheme that minimizes the back-action heating of one of the quadratures of the mechanical oscillator motion. Laser linewidths narrow compared to the decay rate of the cavity field will not pose any problems in an experimental setting, but broader linewidths limit the practicality of this back-action evasion method.Comment: 9 pages, 7 figure

    Excitations in a non-equilibrium Bose-Einstein condensate of exciton-polaritons

    Full text link
    We have developed a mean-field model to describe the dynamics of a non-equilibrium Bose-Einstein condensate of exciton-polaritons in a semiconductor microcavity. The spectrum of elementary excitations around the stationary state is analytically studied in different geometries. A diffusive behaviour of the Goldstone mode is found in the spatially homogeneous case and new features are predicted for the Josephson effect in a two-well geometry.Comment: 5 pages, 2 figure

    Directional `superradiant' collisions: bosonic amplification of atom pairs emitted from an elongated Bose-Einstein condensate

    Full text link
    We study spontaneous directionality in the bosonic amplification of atom pairs emitted from an elongated Bose-Einstein condensate (BEC), an effect analogous to `superradiant' emission of atom-photon pairs. Using a simplified model, we make analytic predictions regarding directional effects for both atom-atom and atom-photon emission. These are confirmed by numerical mean-field simulations, demonstrating the the feasibility of nearly perfect directional emission along the condensate axis. The dependence of the emission angle on the pump strength for atom-atom pairs is significantly different than for atom-photon pairs

    Spontaneous Emission in ultra-cold spin-polarised anisotropic Fermi Seas

    Get PDF
    We examine and explain the spatial emission patterns of ultracold excited fermions in anisotropic trapping potentials in the presence of a spin polarised Fermi sea of ground state atoms. Due to the Pauli principle, the Fermi sea modifies the available phase space for the recoiling atom and thereby modifies its decay rate and the probability of the emitted photon's direction. We show that the spatial anisotropies are due to an intricate interplay between Fermi energies and degeneracy values of specific energy levels and identify a regime in which the emission will become completely directional. Our results are relevant for recent advances in trapping and manipulating cold fermionic samples experimentally and give an example of a conceptually new idea for a directional photon source.Comment: 7 pages, 7 figure

    Observation of persistent flow of a Bose-Einstein condensate in a toroidal trap

    Full text link
    We have observed the persistent flow of Bose-condensed atoms in a toroidal trap. The flow persists without decay for up to 10 s, limited only by experimental factors such as drift and trap lifetime. The quantized rotation was initiated by transferring one unit, \hbar, of the orbital angular momentum from Laguerre-Gaussian photons to each atom. Stable flow was only possible when the trap was multiply-connected, and was observed with a BEC fraction as small as 15%. We also created flow with two units of angular momentum, and observed its splitting into two singly-charged vortices when the trap geometry was changed from multiply- to simply-connected.Comment: 1 file, 5 figure

    Transport of Atom Packets in a Train of Ioffe-Pritchard Traps

    Full text link
    We demonstrate transport and evaporative cooling of several atomic clouds in a chain of magnetic Ioffe-Pritchard traps moving at a low speed (<1<1~m/s). The trapping scheme relies on the use of a magnetic guide for transverse confinement and of magnets fixed on a conveyor belt for longitudinal trapping. This experiment introduces a new approach for parallelizing the production of Bose-Einstein condensates as well as for the realization of a continuous atom laser

    Observation of a 2D Bose-gas: from thermal to quasi-condensate to superfluid

    Full text link
    We present experimental results on a Bose gas in a quasi-2D geometry near the Berezinskii, Kosterlitz and Thouless (BKT) transition temperature. By measuring the density profile, \textit{in situ} and after time of flight, and the coherence length, we identify different states of the gas. In particular, we observe that the gas develops a bimodal distribution without long range order. In this state, the gas presents a longer coherence length than the thermal cloud; it is quasi-condensed but is not superfluid. Experimental evidence indicates that we observe the superfluid transition (BKT transition).Comment: 5 pages, 6 figure

    Cold atom confinement in an all-optical dark ring trap

    Full text link
    We demonstrate confinement of 85^{85}Rb atoms in a dark, toroidal optical trap. We use a spatial light modulator to convert a single blue-detuned Gaussian laser beam to a superposition of Laguerre-Gaussian modes that forms a ring-shaped intensity null bounded harmonically in all directions. We measure a 1/e spin-relaxation lifetime of ~1.5 seconds for a trap detuning of 4.0 nm. For smaller detunings, a time-dependent relaxation rate is observed. We use these relaxation rate measurements and imaging diagnostics to optimize trap alignment in a programmable manner with the modulator. The results are compared with numerical simulations.Comment: 5 pages, 4 figure
    corecore