17 research outputs found

    Optical transfer cavity stabilization using current-modulated injection-locked diode lasers

    Get PDF
    It is demonstrated that RF current modulation of a frequency stabilized injection-locked diode laser allows the stabilization of an optical cavity to adjustable lengths, by variation of the RF frequency. This transfer cavity may be used to stabilize another laser at an arbitrary wavelength, in the absence of atomic or molecular transitions suitable for stabilization. Implementation involves equipment and techniques commonly used in laser cooling and trapping laboratories, and does not require electro- or acousto-optic modulators. With this technique we stabilize a transfer cavity using a RF current-modulated diode laser which is injection locked to a 780 nm reference diode laser. The reference laser is stabilized using polarization spectroscopy in a Rb cell. A Ti:sapphire ring laser at 960 nm is locked to this transfer cavity and may be precisely scanned by varying the RF modulation frequency. We demonstrate the suitability of this system for the excitation of laser cooled Rb atoms to Rydberg states

    Determination of the Rb ng-series quantum defect by electric-field-induced resonant energy transfer between cold Rydberg atoms

    Full text link
    Resonant energy transfer between cold Rydberg atoms was used to determine Rydberg atom energy levels, at precisions approaching those obtainable in microwave spectroscopy. Laser cooled Rb atoms from a magneto-optical trap were optically excited to 32d Rydberg states. The two-atom process 32d(j=5/2) + 32d(j=5/2) -> 34p(j=3/2) + 30g is resonant at an electric field of approximately 0.3 V/cm. This process is driven by the electric dipole-dipole interaction, which is allowed due to the partial f character that the g state acquires in an electric field. The experimentally observed resonant field, together with the Stark map calculation is used to make a determination of the Rb ng-series quantum defect: delta_g (n=30) = 0.00405(6)

    Resonant electric dipole-dipole interactions between cold Rydberg atoms in a magnetic field

    Full text link
    Laser cooled Rb atoms were optically excited to 46d Rydberg states. A microwave pulse transferred a fraction of the atoms to the 47p Rydberg state. The resonant electric dipole-dipole interactions between atoms in these two states were probed using the linewidth of the two-photon microwave transition 46d-47d. The presence of a weak magnetic field (approximately 0.5 G) reduced the observed line broadening, indicating that the interaction is suppressed by the field. The field removes some of the energy degeneracies responsible for the resonant interaction, and this is the basis for a quantitative model of the resulting suppression. A technique for the calibration of magnetic field strengths using the 34s-34p one-photon transition is also presented.Comment: Accepted for publication in Physical Review

    Spectroscopic observation of resonant electric dipole-dipole interactions between cold Rydberg atoms

    Full text link
    Resonant electric dipole-dipole interactions between cold Rydberg atoms were observed using microwave spectroscopy. Laser-cooled Rb atoms in a magneto-optical trap were optically excited to 45d Rydberg states using a pulsed laser. A microwave pulse transferred a fraction of these Rydberg atoms to the 46p state. A second microwave pulse then drove atoms in the 45d state to the 46d state, and was used as a probe of interatomic interactions. The spectral width of this two-photon probe transition was found to depend on the presence of the 46p atoms, and is due to the resonant electric dipole-dipole interaction between 45d and 46p Rydberg atoms.Comment: 5 pages, 3 figures. Accepted for publication in Phys. Rev. Lett. Titles and e-print numbers of references added to this versio

    Optical transfer cavity stabilization using currentmodulated injection-locked diode lasers,” Rev

    Get PDF
    It is demonstrated that rf current modulation of a frequency stabilized injection-locked diode laser allows the stabilization of an optical cavity to adjustable lengths, by variation of the rf frequency. This transfer cavity may be used to stabilize another laser at an arbitrary wavelength, in the absence of atomic or molecular transitions suitable for stabilization. Implementation involves equipment and techniques commonly used in laser cooling and trapping laboratories and does not require electroor acousto-optic modulators. With this technique we stabilize a transfer cavity using a rf current-modulated diode laser which is injection locked to a 780 nm reference diode laser. The reference laser is stabilized using polarization spectroscopy in a Rb cell. A Ti:sapphire ring laser at 960 nm is locked to this transfer cavity and may be precisely scanned by varying the rf modulation frequency. We demonstrate the suitability of this system for the excitation of laser cooled Rb atoms to Rydberg states

    Effect of photoions on the line shapes of the F\"orster resonance and microwave transitions in cold rubidium Rydberg atoms

    Full text link
    Experiments on the spectroscopy of the F\"orster resonance Rb(37P)+Rb(37P) -> Rb(37S)+Rb(38S) and microwave transitions nP -> n'S, n'D between Rydberg states of cold Rb atoms in a magneto-optical trap have been performed. Under ordinary conditions, all spectra exhibited a 2-3 MHz line width independently of the interaction time of atoms with each other or with microwave radiation, although the ultimate resonance width should be defined by the inverse interaction time. Analysis of the experimental conditions has shown that the main source of the line broadening was the inhomogeneous electric field of cold photoions appeared at the excitation of initial Rydberg nP states by broadband pulsed laser radiation. Using an additional pulse of the electric field, which rapidly removed the photoions after the laser pulse, lead to a substantial narrowing of the microwave and F\"orster resonances. An analysis of various sources of the line broadening in cold Rydberg atoms has been conducted.Comment: 10 pages, 6 figure

    Observation of collective excitation of two individual atoms in the Rydberg blockade regime

    Full text link
    The dipole blockade between Rydberg atoms has been proposed as a basic tool in quantum information processing with neutral atoms. Here we demonstrate experimentally the Rydberg blockade of two individual atoms separated by 4 μ\mum. Moreover, we show that, in this regime, the single atom excitation is enhanced by a collective two-atom behavior associated with the excitation of an entangled state. This observation is a crucial step towards the deterministic manipulation of entanglement of two or more atoms using the Rydberg dipole interaction.Comment: 5 pages, 4 figure

    Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances

    Get PDF
    We demonstrate experimentally that Stark-tuned Förster resonances can be used to substantially increase the interaction between individual photons mediated by Rydberg interaction inside an optical medium. This technique is employed to boost the gain of a Rydberg-mediated single-photon transistor and to enhance the non-destructive detection of single Rydberg atoms. Furthermore, our all-optical detection scheme enables high-resolution spectroscopy of two-state Förster resonances, revealing the fine structure splitting of high-n Rydberg states and the non-degeneracy of Rydberg Zeeman substates in finite fields. We show that the ∣50S1/2,48S1/2⟩↔∣49P1/2,48P1/2⟩ pair state resonance in 87Rb enables simultaneously a transistor gain G>100 and all-optical detection fidelity of single Rydberg atoms F>0.8. We demonstrate for the first time the coherent operation of the Rydberg transistor with G>2 by reading out the gate photon after scattering source photons. Comparison of the observed readout efficiency to a theoretical model for the projection of the stored spin wave yields excellent agreement and thus successfully identifies the main decoherence mechanism of the Rydberg transistor
    corecore