17 research outputs found
Optical transfer cavity stabilization using current-modulated injection-locked diode lasers
It is demonstrated that RF current modulation of a frequency stabilized
injection-locked diode laser allows the stabilization of an optical cavity to
adjustable lengths, by variation of the RF frequency. This transfer cavity may
be used to stabilize another laser at an arbitrary wavelength, in the absence
of atomic or molecular transitions suitable for stabilization. Implementation
involves equipment and techniques commonly used in laser cooling and trapping
laboratories, and does not require electro- or acousto-optic modulators. With
this technique we stabilize a transfer cavity using a RF current-modulated
diode laser which is injection locked to a 780 nm reference diode laser. The
reference laser is stabilized using polarization spectroscopy in a Rb cell. A
Ti:sapphire ring laser at 960 nm is locked to this transfer cavity and may be
precisely scanned by varying the RF modulation frequency. We demonstrate the
suitability of this system for the excitation of laser cooled Rb atoms to
Rydberg states
Determination of the Rb ng-series quantum defect by electric-field-induced resonant energy transfer between cold Rydberg atoms
Resonant energy transfer between cold Rydberg atoms was used to determine
Rydberg atom energy levels, at precisions approaching those obtainable in
microwave spectroscopy. Laser cooled Rb atoms from a magneto-optical trap were
optically excited to 32d Rydberg states. The two-atom process 32d(j=5/2) +
32d(j=5/2) -> 34p(j=3/2) + 30g is resonant at an electric field of
approximately 0.3 V/cm. This process is driven by the electric dipole-dipole
interaction, which is allowed due to the partial f character that the g state
acquires in an electric field. The experimentally observed resonant field,
together with the Stark map calculation is used to make a determination of the
Rb ng-series quantum defect: delta_g (n=30) = 0.00405(6)
Resonant electric dipole-dipole interactions between cold Rydberg atoms in a magnetic field
Laser cooled Rb atoms were optically excited to 46d Rydberg states. A
microwave pulse transferred a fraction of the atoms to the 47p Rydberg state.
The resonant electric dipole-dipole interactions between atoms in these two
states were probed using the linewidth of the two-photon microwave transition
46d-47d. The presence of a weak magnetic field (approximately 0.5 G) reduced
the observed line broadening, indicating that the interaction is suppressed by
the field. The field removes some of the energy degeneracies responsible for
the resonant interaction, and this is the basis for a quantitative model of the
resulting suppression. A technique for the calibration of magnetic field
strengths using the 34s-34p one-photon transition is also presented.Comment: Accepted for publication in Physical Review
Spectroscopic observation of resonant electric dipole-dipole interactions between cold Rydberg atoms
Resonant electric dipole-dipole interactions between cold Rydberg atoms were
observed using microwave spectroscopy. Laser-cooled Rb atoms in a
magneto-optical trap were optically excited to 45d Rydberg states using a
pulsed laser. A microwave pulse transferred a fraction of these Rydberg atoms
to the 46p state. A second microwave pulse then drove atoms in the 45d state to
the 46d state, and was used as a probe of interatomic interactions. The
spectral width of this two-photon probe transition was found to depend on the
presence of the 46p atoms, and is due to the resonant electric dipole-dipole
interaction between 45d and 46p Rydberg atoms.Comment: 5 pages, 3 figures. Accepted for publication in Phys. Rev. Lett.
Titles and e-print numbers of references added to this versio
Optical transfer cavity stabilization using currentmodulated injection-locked diode lasers,” Rev
It is demonstrated that rf current modulation of a frequency stabilized injection-locked diode laser allows the stabilization of an optical cavity to adjustable lengths, by variation of the rf frequency. This transfer cavity may be used to stabilize another laser at an arbitrary wavelength, in the absence of atomic or molecular transitions suitable for stabilization. Implementation involves equipment and techniques commonly used in laser cooling and trapping laboratories and does not require electroor acousto-optic modulators. With this technique we stabilize a transfer cavity using a rf current-modulated diode laser which is injection locked to a 780 nm reference diode laser. The reference laser is stabilized using polarization spectroscopy in a Rb cell. A Ti:sapphire ring laser at 960 nm is locked to this transfer cavity and may be precisely scanned by varying the rf modulation frequency. We demonstrate the suitability of this system for the excitation of laser cooled Rb atoms to Rydberg states
Effect of photoions on the line shapes of the F\"orster resonance and microwave transitions in cold rubidium Rydberg atoms
Experiments on the spectroscopy of the F\"orster resonance Rb(37P)+Rb(37P) ->
Rb(37S)+Rb(38S) and microwave transitions nP -> n'S, n'D between Rydberg states
of cold Rb atoms in a magneto-optical trap have been performed. Under ordinary
conditions, all spectra exhibited a 2-3 MHz line width independently of the
interaction time of atoms with each other or with microwave radiation, although
the ultimate resonance width should be defined by the inverse interaction time.
Analysis of the experimental conditions has shown that the main source of the
line broadening was the inhomogeneous electric field of cold photoions appeared
at the excitation of initial Rydberg nP states by broadband pulsed laser
radiation. Using an additional pulse of the electric field, which rapidly
removed the photoions after the laser pulse, lead to a substantial narrowing of
the microwave and F\"orster resonances. An analysis of various sources of the
line broadening in cold Rydberg atoms has been conducted.Comment: 10 pages, 6 figure
Observation of collective excitation of two individual atoms in the Rydberg blockade regime
The dipole blockade between Rydberg atoms has been proposed as a basic tool
in quantum information processing with neutral atoms. Here we demonstrate
experimentally the Rydberg blockade of two individual atoms separated by 4
m. Moreover, we show that, in this regime, the single atom excitation is
enhanced by a collective two-atom behavior associated with the excitation of an
entangled state. This observation is a crucial step towards the deterministic
manipulation of entanglement of two or more atoms using the Rydberg dipole
interaction.Comment: 5 pages, 4 figure
Enhancement of Rydberg-mediated single-photon nonlinearities by electrically tuned Förster resonances
We demonstrate experimentally that Stark-tuned Förster resonances can be used to substantially increase the interaction between individual photons mediated by Rydberg interaction inside an optical medium. This technique is employed to boost the gain of a Rydberg-mediated single-photon transistor and to enhance the non-destructive detection of single Rydberg atoms. Furthermore, our all-optical detection scheme enables high-resolution spectroscopy of two-state Förster resonances, revealing the fine structure splitting of high-n Rydberg states and the non-degeneracy of Rydberg Zeeman substates in finite fields. We show that the ∣50S1/2,48S1/2⟩↔∣49P1/2,48P1/2⟩ pair state resonance in 87Rb enables simultaneously a transistor gain G>100 and all-optical detection fidelity of single Rydberg atoms F>0.8. We demonstrate for the first time the coherent operation of the Rydberg transistor with G>2 by reading out the gate photon after scattering source photons. Comparison of the observed readout efficiency to a theoretical model for the projection of the stored spin wave yields excellent agreement and thus successfully identifies the main decoherence mechanism of the Rydberg transistor