36,693 research outputs found
A 'p-n' diode with hole and electron-doped lanthanum manganite
The hole-doped manganite La0.7Ca0.3MnO3 and the electron-doped manganite
La0.7Ce0.3MnO3 undergo an insulator to metal transition at around 250 K, above
which both behave as a polaronic semiconductor. We have successfully fabricated
an epitaxial trilayer (La0.7Ca0.3MnO3/SrTiO3/La0.7Ce0.3MnO3), where SrTiO3 is
an insulator. At room temperature, i.e. in the semiconducting regime, it
exhibits asymmetric current-voltage (I-V) characteristics akin to a p-n diode.
The observed asymmetry in the I-V characteristics disappears at low
temperatures where both the manganite layers are metallic. To the best of our
knowledge, this is the first report of such a p-n diode, using the polaronic
semiconducting regime of doped manganites.Comment: PostScript text and 2 figures, to be published in Appl. Phys. Lett
A high-resolution mm and cm study of the obscured LIRG NGC 4418 - A compact obscured nucleus fed by in-falling gas?
The aim of this study is to constrain the dynamics, structure and feeding of
the compact nucleous of NGC4418, and to reveal the nature of the main hidden
power source: starburst or AGN. We obtained high spatial resolution
observations of NGC4418 at 1.4 and 5 GHz with MERLIN, and at 230 and 270 GHz
with the SMA very extended configuration. We use the continuum morphology and
flux density to estimate the size of the emitting region, the star formation
rate and the dust temperature. Emission lines are used to study the kinematics
through position-velocity diagrams. Molecular emission is studied with
population diagrams and by fitting an LTE synthetic spectrum. We detect bright
1mm line emission from CO, HC3N, HNC and C34S, and 1.4 GHz absorption from HI.
The CO 2-1 emission and HI absorption can be fit by two velocity components at
2090 and 2180 km s-1. We detect vibrationally excited HC3N and HNC, with Tvib
300K. Molecular excitation is consistent with a layered temperature structure,
with three main components at 80, 160 and 300 K. For the hot component we
estimate a source size of less than 5 pc. The nuclear molecular gas surface
density of 1e4 Msun pc-2 is extremely high, and similar to that found in the
ultra-luminous infrared galaxy (ULIRG) Arp220. Our observations confirm the the
presence of a molecular and atomic in-flow, previously suggested by Herschel
observations, which is feeding the activity in the center of NGC4418. Molecular
excitation confirms the presence of a very compact, hot dusty core. If a
starburst is responsible for the observed IR flux, this has to be at least as
extreme as the one in Arp220, with an age of 3-10 Myr and a star formation rate
>10 Msun yr-1. If an AGN is present, it must be extremely Compton-thick.Comment: 18 pages, 11 figures, Accepted for publication by A&A on 10/6/201
Temperature dependence of trapped magnetic field in MgB2 bulk superconductor
Based on DC magnetization measurements, the temperature dependencies of the
trapped magnetic field have been calculated for two MgB2 samples prepared by
two different techniques: the high-pressure sintering and the hot pressing.
Experimentally measured trapped field values for the first sample coincide
remarkably well with calculated ones in the whole temperature range. This
proves, from one side, the validity of the introduced calculation approach, and
demonstrates, from another side, the great prospects of the hot pressing
technology for large scale superconducting applications of the MgB2.Comment: 3 pages, 3 figures, submitted to AP
Heterogeneity, Communication, Coordination and Voluntary Provision of a Public Good
The results of twenty-four laboratory sessions are evaluated with respect to the role of alternative definitions of equity when communication is introduced into an environment in which voluntary contributions determine the level of public good provision to small groups of individuals. Individuals experience both non-communication and communication treatments. Additional treatments include the extent to which subjects have information about others’ payoffs from (preferences for) the consumption of public goods and about others’ incomes and payoff functions (preferences). With communication, participants in incomplete information environments are less able to coordinate their contributions while those in complete information environments succeed more often. Under complex heterogeneity payoff distributions widen with the introduction of communication. The data do not support the emergence of a particular pattern of coordination across all treatments.
Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects
The anti-tumour effects of thalidomide have been associated with its anti-angiogenic properties. Second generation thalidomide analogues are distinct compounds with enhanced therapeutic potential. Although these compounds are beginning to enter trials for the treatment of cancer there is very little information regarding the anti-angiogenic activity of these clinically relevant compounds. Furthermore, it is not known how the various immunomodulatory activities of these compounds relate to anti-angiogenic activity. In this study we assessed the anti-angiogenic activity of compounds from both IMiD™ and SelCID™ classes of analogues using a novel in vitro multicellular human assay system and the established rat aorta assay. Our results show that both the IMiDs and SelCIDs tested are significantly more potent than thalidomide. The anti-angiogenic potency of the analogues was not related to inhibition of endothelial cell proliferation, nor their TNF-α/PDE type 4 inhibitory properties. However, anti-migratory effects in vitro and inhibition of tumour growth in vivo was observed with the analogue IMiD-1 (clinically known as REVIMID™). Our results show that anti-angiogenic activity spans both currently defined classes of thalidomide analogue and is not related to their previously described immunomodulatory properties. Identification of the differential effects of these compounds will enable targeting of such compounds into the appropriate clinical setting. British Journal of Cancer (2002) 87, 1166–1172. doi:10.1038/sj.bjc.6600607 www.bjcancer.com © 2002 Cancer Research U
Levels of genetic polymorphism: marker loci versus quantitative traits
Species are the units used to measure ecological diversity and alleles are the units of genetic diversity. Genetic variation within and among species has been documented most extensively using allozyme electrophoresis. This reveals wide differences in genetic variability within, and genetic distances among, species, demonstrating that species are not equivalent units of diversity. The extent to which the pattern observed for allozymes can be used to infer patterns of genetic variation in quantitative traits depends on the forces generating and maintaining variability. Allozyme variation is probably not strictly neutral but, nevertheless, heterozygosity is expected to be influenced by population size and genetic distance will be affected by time since divergence. The same is true for quantitative traits influenced by many genes and under weak stabilizing selection. However, the limited data available suggest that allozyme variability is a poor predictor of genetic variation in quantitative traits within populations. It is a better predictor of general phenotypic divergence and of postzygotic isolation between populations or species, but is only weakly correlated with prezygotic isolation. Studies of grasshopper and planthopper mating signal variation and assortative mating illustrate how these characters evolve independently of general genetic and morphological variation. The role of such traits in prezygotic isolation, and hence speciation, means that they will contribute significantly to the diversity of levels of genetic variation within and among species
Deep ALMA imaging of the merger NGC1614 - Is CO tracing a massive inflow of non-starforming gas?
Observations of the molecular gas over scales of 0.5 to several kpc provide
crucial information on how gas moves through galaxies, especially in mergers
and interacting systems, where it ultimately reaches the galaxy center,
accumulates, and feeds nuclear activity. Studying the processes involved in the
gas transport is an important step forward to understand galaxy evolution.
12CO, 13CO and C18O1-0 high-sensitivity ALMA observations were used to assess
properties of the large-scale molecular gas reservoir and its connection to the
circumnuclear molecular ring in NGC1614. The role of excitation and abundances
were studied in this context. Spatial distributions of the 12CO and 13CO
emission show significant differences. 12CO traces the large-scale molecular
gas reservoir, associated with a dust lane that harbors infalling gas. 13CO
emission is - for the first time - detected in the large-scale dust lane. Its
emission peaks between dust lane and circumnuclear molecular ring. A
12CO-to-13CO1-0 intensity ratio map shows high values in the ring region (~30)
typical for the centers of luminous galaxy mergers and even more extreme values
in the dust lane (>45). This drop in ratio is consistent with molecular gas in
the dust lane being in a diffuse, unbound state while being funneled towards
the nucleus. We find a high 16O-to-18O abundance ratio in the starburst region
(>900), typical of quiescent disk gas - by now, the starburst is expected to
have enriched the nuclear ISM in 18O relative to 16O. The massive inflow of gas
may be partially responsible for the low 18O/16O abundance since it will dilute
the starburst enrichment with unprocessed gas from greater radii. The
12CO-to-13CO abundance is consistent with this scenario. It suggests that the
nucleus of NGC1614 is in a transient phase of evolution where starburst and
nuclear growth are fuelled by returning gas from the minor merger event.Comment: 10 pages, 9 figures, accepted for publication in A&
An amphitropic cAMP-binding protein in yeast mitochondria
ABSTRACT: We describe the first example of a mitochondrial protein with a covalently attached phos-phatidylinositol moiety acting as a membrane anchor. The protein can be metabolically labeled with both stearic acid and inositol. The stearic acid label is removed by phospholipase D whereupon the protein with the retained inositol label is released from the membrane. This protein is a cAMP receptor of the yeast Saccharomyces cereuisiae and tightly associated with the inner mitochondrial membrane. However, it is converted into a soluble form during incubation of isolated mitochondria with Ca2+ and phospholipid (or lipid derivatives). This transition requires the action of a proteinaceous, N-ethylmaleimide-sensitive component of the intermembrane space and is accompanied by a decrease in the lipophilicity of the cAMP receptor. We propose that the component of the intermembrane space triggers the amphitropic behavior of the mitochondrial lipid-modified CAMP-binding protein through a phospholipase activity. Only in recent years specific fatty acids have been recog-nized to play important roles in the association of proteins with membranes. Both noncovalent and covalent interactions be-tween fatty acids and proteins have been reported. Among the latter are GTP-binding proteins (Molenaar et al., 1988)
- …
