16,491 research outputs found

    Kinetics of dissociative chemisorption of methane and ethane on Pt(110)-(1X2)

    Get PDF
    The initial probability of dissociative chemisorption Pr of methane and ethane on the highly corrugated, reconstructed Pt(110)‐(1×2) surface has been measured in a microreactor by counting the number of carbon atoms on the surface following the reaction of methane and ethane on the surface which was held at various constant temperatures between 450 and 900 K during the reaction. Methane dissociatively chemisorbs on the Pt(110)‐(1×2) surface with an apparent activation energy of 14.4 kcal/mol and an apparent preexponential factor of 0.6. Ethane chemisorbs dissociatively with an apparent activation energy of 2.8 kcal/mol and an apparent preexponential factor of 4.7×10^(−3). Kinetic isotope effects were observed for both reactions. The fact that P_r is a strong function of surface temperature implies that the dissociation reactions proceed via a trapping‐mediated mechanism. A model based on a trapping‐mediated mechanism is used to explain the observed kinetic behavior. Kinetic parameters for C–H bond dissociation of the thermally accommodated methane and ethane are extracted from the model

    Annealing of radiation damage in low resistivity silicon solar cells

    Get PDF
    The reduction of the temperatures required to restore cell performance after irradiation was investigated with emphasis on the annealing characteristics of two groups of cells containing different amounts of oxygen and carbon. Examination of defect behavior in irradiated boron doped silicon leads to the tentative conclusion that further reduction in annealing temperature could be achieved by decreasing the carbon concentration and either neutralizing the divacancy and/or minimizing its formation as a result of irradiation. A significant reduction in the temperature required to remove radiation induced degradation in 0.1 ohm centimeter silicon solar cells was achieved

    Reverse annealing in radiation-damaged, silicon solar cells

    Get PDF
    In order to understand the results in terms of properties of the radiation induced defects, a combination of diffusion length measurements and defect data obtained from Deep Level Transient Spectroscopy were used. The results indicate that the defect at E sub v + 0.30 eV is responsible for the observed reversed annealing. The defect was identified as a boron-oxygen vacancy complex. This identification is a guide to processing efforts aimed at increasing the concentration of these radiation induced defects

    Status and future directions of InP solar cell research

    Get PDF
    An overview of the current status and future directions of InP space solar cell research is provided. The scope of the paper does not allow us to discuss other recent major developments in InP cell modeling, contacts, and characterization, or developments in other solar cell materials. Solar cells made from InP and related materials are not expected to be used in the near future for terrestrial applications, but significant Air-Mass1.5 (AM1.5) cell efficiencies are given for comparison. This paper deals with the developments in single-junction cells, multijunction tandem cells, and space flight testing, including radiation effects. Concentrator InP solar cells are also discussed, since they offer the possibility of simultaneous thermal and current injection annealing. These cells also promise cost effectiveness and the concentrator elements may provide cells with extra protection from space radiation. The concluding section addresses the steps to be taken in the future and provides guidelines for further research and development

    Radiation damage annealing mechanisms and possible low temperature annealing in silicon solar cells

    Get PDF
    The defect responsible for reverse annealing in 2 ohm/cm n(+)/p silicon solar cells was identified. This defect, with energy level at e sub v + 0.30 eV was tentatively identified as a boron oxygen-vacancy complex. Results indicate that its removal could result in significant annealing for 2 ohm/cm and lower resistivity cells at temperatures as low as 200 C. These results were obtained by use of an expression derived from the Shockley-Read-Hall recombination theory which relates measured diffusion length ratios to relative defect concentrations and electron capture cross sections. The relative defect concentrations and one of the required capture cross sections are obtained from Deep Level Transient Spectroscopy. Four additional capture cross sections are obtained using diffusion length data and data from temperature dependent lifetime studied. These calculated results are in reasonable agreement with experimental data

    Annealing of radiation damage in 0.1- and 2-ohm-centimeter Silicon solar cells

    Get PDF
    Isochronal and isothermal annealing studies were conducted on 0.1 and 2 ohm centimeter n(+)/p silicon cells after irradiation by 1 MeV electrons at fluences of 10 to the 14th power, 5 times 10 to the 14th power, and 10 to the 15th power per square centimeter. For the 0.1 ohm centimeter cells, reverse annealing was not observed in the isochronal data. However, reverse annealing was observed between approximately 200 and 325 C in the isochronal data of the 2 ohm centimeter cells. Isothermal annealing of 0.1 ohm centimeter cells at 500 C restored pre-irradiation maximum power P sub max within 20 minutes at fluence = 10 to the 14th power, in 180 minutes at fluence = 5 times 10 to the 14th power and to 92 percent of pre-irradiation P sub max in 180 minutes for fluence = 10 to the 15th power. Annealing at 450 C was found inadequate to restore 0.1 ohm centimeter cell performance within reasonable times for all fluence levels. By comparison, at 450 C, the P sub max of 2 ohm centimeter cells was restored within 45 minutes, for the two highest fluence levels, while for the lowest fluence, restoration was completed within 15 minutes. Spectral response data indicate that, for both resistivities, degradation occurs predominantly in the cells p-type base region

    Reduced annealing temperatures in silicon solar cells

    Get PDF
    Cells irradiated to a fluence of 5x10,000,000,000,000/square cm showed short circuit current on annealing at 200 C, with complete annealing occurring at 275 C. Cells irradiated to 100,000,000,000,000/square cm showed a reduction in annealing temperature from the usual 500 to 300 C. Annealing kinetic studies yield an activation energy of (1.5 + or - 2) eV for the low fluence, low temperature anneal. Comparison with activation energies previously obtained indicate that the presently obtained activation energy is consistent with the presence of either the divacancy or the carbon interstitial carbon substitutional pair, a result which agrees with the conclusion based on defect behavior in boron-doped silicon

    Massless monopoles and the moduli space approximation

    Get PDF
    We investigate the applicability of the moduli space approximation in theories with unbroken non-Abelian gauge symmetries. Such theories have massless magnetic monopoles that are manifested at the classical level as clouds of non-Abelian field surrounding one or more massive monopoles. Using an SO(5) example with one massive and one massless monopole, we compare the predictions of the moduli space approximation with the results of a numerical solution of the full field equations. We find that the two diverge when the cloud velocity becomes of order unity. After this time the cloud profile approximates a spherical wavefront moving at the speed of light. In the region well behind this wavefront the moduli space approximation continues to give a good approximation to the fields. We therefore expect it to provide a good description of the motion of the massive monopoles and of the transfer of energy between the massive and massless monopoles.Comment: 18 pages, 5 figure

    Cosmic Evolution in Generalised Brans-Dicke Theory

    Get PDF
    We have studied the Generalised Brans-Dicke theory and obtained exact solutions of a(t),phi(t),and omega(t) for different epochs of the cosmic evolution .We discuss how inflation,decceleration,cosmic acceleration can result from this solution.The time variation of G(t) is also examined.Comment: 12 pages, no figure

    Static spherically symmetric perfect fluid solutions in f(R)f(R) theories of gravity

    Get PDF
    Static spherically symmetric perfect fluid solutions are studied in metric f(R)f(R) theories of gravity. We show that pressure and density do not uniquely determine f(R)f(R) ie. given a matter distribution and an equation state, one cannot determine the functional form of f(R)f(R). However, we also show that matching the outside Schwarzschild-de Sitter-metric to the metric inside the mass distribution leads to additional constraints that severely limit the allowed fluid configurations.Comment: 5 page
    corecore