11 research outputs found

    Terpenoid metabolic engineering in photosynthetic microorganisms

    Full text link
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Terpenoids are a group of natural products that have a variety of roles, both essential and non-essential, in metabolism and in biotic and abiotic interactions, as well as commercial applications such as pharmaceuticals, food additives, and chemical feedstocks. Economic viability for commercial applications is commonly not achievable by using natural source organisms or chemical synthesis. Engineered bio-production in suitable heterologous hosts is often required to achieve commercial viability. However, our poor understanding of regulatory mechanisms and other biochemical processes makes obtaining efficient conversion yields from feedstocks challenging. Moreover, production from carbon dioxide via photosynthesis would significantly increase the environmental and potentially the economic credentials of these processes by disintermediating biomass feedstocks. In this paper, we briefly review terpenoid metabolism, outline some recent advances in terpenoid metabolic engineering, and discuss why photosynthetic unicellular organisms—such as algae and cyanobacteria—might be preferred production platforms for the expression of some of the more challenging terpenoid pathways

    Cosmic Radiation and its Effects on Technology and Health

    No full text
    In ancient Greece the observations of the famous doctor Hippocrates of Kos had shown proved the environmental impact on human health. Although the term “environment” should not only include the nature surrounding us but also space since the evolution of life depends primarily on events such supernova explosions, formation of stars and falls of meteorites. A major factor in life sustainment is also cosmic radiation, originating from supernova star explosions, gamma-ray bursts and cosmic background radiation and has a major impact both on human health and technology

    Are synthetic biology standards applicable in everyday research practice?

    No full text
    The issue of standardization in synthetic biology is a recurring one. As a discipline that incorporates engineering principles into biological designs, synthetic biology needs effective ways to communicate results and allow different researchers (both academic and industrial) to build upon previous results and improve on existing designs. An aspect that is left out of the discussions, especially when they happen at the level of academic and industrial consortia or policymaking, is whether or not standards are applicable or even useful in everyday research practice. In this caucus article, we examine this particular issue with the hope of including it in the standardization discussions agenda and provide insights into a topic that synthetic biology researchers experience daily. © 2020 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Lt

    The two Dps proteins, NpDps2 and NpDps5, are involved in light-induced oxidative stress tolerance in the N2-fixing cyanobacterium Nostoc punctiforme

    No full text
    Cyanobacteria are photosynthetic prokaryotes that are considered biotechnologically prominent organisms for production of high-value compounds. Cyanobacteria are subject to high-light intensities, which is a challenge that needs to be addressed in design of efficient bio-engineered photosynthetic organisms. Dps proteins are members of the ferritin superfamily and are omnipresent in prokaryotes. They play a major role in oxidative stress protection and iron homeostasis. The filamentous, heterocyst-forming Nostoc punctiforme, has five Dps proteins. In this study we elucidated the role of these Dps proteins in acclimation to high light intensity, the gene loci organization and the transcriptional regulation of all five dps genes in N. punctiforme was revealed, and dps-deletion mutant strains were used in physiological characterization. Two mutants defective in Dps2 and Dps5 activity displayed a reduced fitness under increased illumination, as well as a differential Photosystem (PS) stoichiometry, with an elevated Photosystem II to Photosystem I ratio in the dps5 deletion strain. This work establishes a Dps-mediated link between light tolerance, HO detoxification, and iron homeostasis, and provides further evidence on the non-redundant role of multiple Dps proteins in this multicellular cyanobacterium

    Biodesulfurization of dibenzothiophene and its alkylated derivatives in a two-phase bubble column bioreactor by resting cells of rhodococcus erythropolis igts8

    No full text
    Biodesulfurization (BDS) is considered a complementary technology to the traditional hydrodesulfurization treatment for the removal of recalcitrant sulfur compounds from petroleum products. BDS was investigated in a bubble column bioreactor using two-phase media. The effects of various process parameters, such as biocatalyst age and concentration, organic fraction percentage (OFP), and type of sulfur compound—namely, dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), 4,6-dimethyldibenzothiophene (4,6-DMDBT), and 4,6-diethyldibenzothiophene (4,6-DEDBT) —were evaluated, using resting cells of Rhodococcus erythropolis IGTS8. Cells derived from the beginning of the exponential growth phase of the bacterium exhibited the highest biodesulfurization efficiency and rate. The biocatalyst performed better in an OFP of 50% v/v. The extent of DBT desulfurization was dependent on cell concentration, with the desulfurization rate reaching its maximum at intermediate cell concentrations. A new semi-empirical model for the biphasic BDS was developed, based on the overall Michaelis-Menten kinetics and taking into consideration the deactivation of the biocatalyst over time, as well as the underlying mass transfer phenomena. The model fitted experimental data on DBT consumption and 2-hydroxibyphenyl (2-HBP) accumulation in the organic phase for various initial DBT concentrations and different organosulfur compounds. For constant OFP and biocatalyst concentration, the most important parameter that affects BDS efficiency seems to be biocatalyst deactivation, while the phenomenon is controlled by the affinities of biodesulfurizing enzymes for the different organosulfur compounds. Thus, desulfurization efficiency decreased with increasing initial DBT concentration, and in inverse proportion to increases in the carbon number of alkyl substituent groups. © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/)
    corecore