72 research outputs found

    3D FEM analysis of pounding response of bridge structures at a canyon site to spatially varying ground motions

    Get PDF
    Previous studies of pounding responses of adjacent bridge structures under seismic excitation were usually based on the simplified lumped mass model or beamcolumn element model. Consequently, only 1D point to point pounding, which is usually in the longitudinal direction of the bridge, could be considered. In reality, pounding could occur along the entire surfaces of the adjacent bridge structures. Moreover, spatially varying transverse ground motions generate torsional responses of bridge decks and these responses may cause eccentric poundings. That is why many pounding damages occurred at corners of the adjacent decks as observed in almost all previous major earthquakes. A simplified 1D model cannot capture torsional response and eccentric poundings. To more realistically investigate pounding between adjacent bridge structures, a two-span simply-supported bridge structure located at a canyon site is established with a detailed 3D finite element model in the present study. Spatially varying ground motions in the longitudinal, transverse and vertical directions at the bridge supports are stochastically simulated as inputs in the analysis. The pounding responses of the bridge structure under multi-component spatially varying ground motions are investigated in detail by using the finite element code LS-DYNA. Numerical results show that the detailed 3D finite element model clearly captures the eccentric poundings of bridge decks, which may induce local damage around the corners of bridge decks. It demonstrates the necessity of detailed 3D modelling for a more realistic simulation of pounding responses of adjacent bridge decks to earthquake excitations

    Olprinone Attenuates the Acute Inflammatory Response and Apoptosis after Spinal Cord Trauma in Mice

    Get PDF
    BACKGROUND: Olprinone hydrochloride is a newly developed compound that selectively inhibits PDE type III and is characterized by several properties, including positive inotropic effects, peripheral vasodilatory effects, and a bronchodilator effect. In clinical settings, olprinone is commonly used to treat congestive cardiac failure, due to its inotropic and vasodilating effects. The mechanism of these cardiac effects is attributed to increased cellular concentrations of cAMP. The aim of the present study was to evaluate the pharmacological action of olprinone on the secondary damage in experimental spinal cord injury (SCI) in mice. METHODOLOGY/PRINCIPAL FINDINGS: Traumatic SCI is characterized by an immediate, irreversible loss of tissue at the lesion site, as well as a secondary expansion of tissue damage over time. Although secondary injury should be preventable, no effective treatment options currently exist for patients with SCI. Spinal cord trauma was induced in mice by the application of vascular clips (force of 24 g) to the dura via a four-level T5-T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, and production of inflammatory mediators, tissue damage, apoptosis, and locomotor disturbance. Olprinone treatment (0.2 mg/kg, i.p.) 1 and 6 h after the SCI significantly reduced: (1) the degree of spinal cord inflammation and tissue injury (histological score), (2) neutrophil infiltration (myeloperoxidase activity), (3) nitrotyrosine formation, (4) pro-inflammatory cytokines, (5) NF-kappaB expression, (6) p-ERK1/2 and p38 expression and (7) apoptosis (TUNEL staining, FAS ligand, Bax and Bcl-2 expression). Moreover, olprinone significantly ameliorated the recovery of hind-limb function (evaluated by motor recovery score). CONCLUSIONS/SIGNIFICANCE: Taken together, our results clearly demonstrate that olprinone treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma

    Spatial and temporal trends of the Stockholm Convention POPs in mothers’ milk — a global review

    Get PDF

    Interaction in Motion with Mobile Projectors: Design Considerations

    No full text
    Emerging research and growing use of mobile projectors reveal a need for better understanding of how to design interaction with such devices.This paper examines key aspects affecting the use of mobile projectors during motion. With the help of two prototypes we explore visibility issues of mobile projectors, in particular how surface colors and geometry affect the visibility of projected information. We then consider the choice of placement of information in the human field of view in the context of peripersonal and extrapersonal spaces. Finally, we raise the issue of body mount location and design implications of long-term use of this type of pervasive display. The paper presents two design explorations using projected displays to address projection on outdoor regular surfaces (snow) and projection on indoor irregular surfaces (indoor and outdoor), in the form of useable prototypes presenting map navigation. Use of the prototypes was explored in various contexts, leading to insights into the limitations and possibilities of such displays. These insights are presented in a set of design considerations intended to inform designers of future mobile projector applications

    Second case of zoonotic

    No full text
    A non-gravid female Onchocerca was found in histopathological sections of a biopsy specimen taken from a painful nodule in the wrist of a 57-year-old woman in Oita, in southern Japan. Six species of Onchocerca have been found in animals in Japan: two in wild bovids, one in equids, and three in domestic bovids of which one, Onchocerca sp., is only known by the microfilaria and infective stage. Distinctive morphological features of the worm, including a three-layered thick cuticle with prominent annular ridges at wide intervals, high somatic muscles and narrow lateral chords, resembled those of O. gutturosa, one of the three bovine Onchocerca species transmitted in the Oita region. However Onchocerca sp., which is also transmitted in this region, cannot be excluded.An ELISA test of the patient serum suggests that infections by Onchocerca spp. might be distinguished from those by Dirofilaria immitis, of which the number of human cases is increasing in Japan

    Optimum design of tuned mass dampers for different earthquake ground motion parameters and models

    Get PDF
    Tuned mass dampers are frequently used for passive control of vibrations in civil structures subject to seismic and wind actions. Their efficiency depends on selection of their mechanical properties in relation to main system and excitation characteristics. This paper proposes an optimum design strategy of single tuned mass dampers to control vibrations of principal mode of structures excited by earthquake ground motion. The main purpose of the paper is to investigate the influence of the time modulation of earthquake excitation upon the optimal tuned mass dampers design parameters: frequency and damping ratio. The study is based on numerical analyses carried out with different stochastic models for earthquakes: a simple filtered white noise model and two time modulated filtered white noise models. The numerical analyses are carried out to solve an optimization problem with a performance index defined by the reduction of the standard deviation of either the structure displacement or its inertial acceleration as objective function. To complete the work, the influence of the bandwidth excitation over the values of the optimal tuned mass damper parameters is investigated, as well the optimum mass ratio and the structure frequency. The results of the numeral analyses carried out infer that the earthquake excitation characteristics, including its modulation in time domain, highly affect the optimum tuned mass damper design parameters values

    Foundation and Structure Effects

    No full text
    • …
    corecore