31,561 research outputs found
Atmospheric refraction effects on baseline error in satellite laser ranging systems
Because of the mathematical complexities involved in exact analyses of baseline errors, it is not easy to isolate atmospheric refraction effects; however, by making certain simplifying assumptions about the ranging system geometry, relatively simple expressions can be derived which relate the baseline errors directly to the refraction errors. The results indicate that even in the absence of other errors, the baseline error for intercontinental baselines can be more than an order of magnitude larger than the refraction error
Stress-Induced Delamination Of Through Silicon Via Structures
Continuous scaling of on-chip wiring structures has brought significant challenges for materials and processes beyond the 32 nm technology node in microelectronics. Recently three-dimensional (3-D) integration with through-silicon-vias (TSVs) has emerged as an effective solution to meet the future interconnect requirement. Thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper examines the effect of thermal stresses on interfacial reliability of TSV structures. First, the three-dimensional distribution of the thermal stress near the TSV and the wafer surface is analyzed. Using a linear superposition method, a semi-analytic solution is developed for a simplified structure consisting of a single TSV embedded in a silicon (Si) wafer. The solution is verified for relatively thick wafers by comparing to numerical results obtained by finite element analysis (FEA). Results from the stress analysis suggest interfacial delamination as a potential failure mechanism for the TSV structure. Analytical solutions for various TSV designs are then obtained for the steady-state energy release rate as an upper bound for the interfacial fracture driving force, while the effect of crack length is evaluated numerically by FEA. Based on these results, the effects of TSV designs and via material properties on the interfacial reliability are elucidated. Finally, potential failure mechanisms for TSV pop-up due to interfacial fracture are discussed.Aerospace Engineerin
Higgs bosons of a supersymmetric model at the Large Hadron Collider
It is found that CP symmetry may be explicitly broken in the Higgs sector of
a supersymmetric model with two extra neutral gauge bosons at the
one-loop level. The phenomenology of the model, the Higgs sector in particular,
is studied for a reasonable parameter space of the model, in the presence of
explicit CP violation at the one-loop level. At least one of the neutral Higgs
bosons of the model might be produced via the fusion process at the Large
Hadron Collider.Comment: 23 pages, 5 figures, JHE
Recommended from our members
Thermomechanical Reliability Challenges For 3D Interconnects With Through-Silicon Vias
Continual scaling of on-chip wiring structures has brought significant challenges for materials and processes beyond the 32 nm technology node in microelectronics. Recently threedimensional (3-D) integration with through-silicon-vias (TSVs) has emerged as an effective solution to meet the future interconnect requirement. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper examines the effects of thermally induced stresses on interfacial reliability of TSV structures. First, three-dimensional distribution of the thermal stress near the TSV and the wafer surface is analyzed. Using a linear superposition method, a semi-analytic solution is developed for a simplified structure consisting of a single TSV embedded in a silicon (Si) wafer. The solution is verified for relatively thick wafers by comparing to numerical results From finite element analysis (FEA). The stress analysis suggests interfacial delamination as a potential failure mechanism for the TSV structure. An analytical solution is then obtained for the steady-state energy release rate as the upper bound for the interfacial fracture driving force, while the effect of crack length is evaluated numerically by FEA. With these results, the effects of the TSV dimensions (e.g., via diameter and wafer thickness) on the interfacial reliability are elucidated. Furthermore, the effects of via material properties are discussed.Aerospace Engineerin
Characterization Of Thermal Stresses And Plasticity In Through-Silicon Via Structures For Three-Dimensional Integration
Through-silicon via (TSV) is a critical element connecting stacked dies in three-dimensional (3D) integration. The mismatch of thermal expansion coefficients between the Cu via and Si can generate significant stresses in the TSV structure to cause reliability problems. In this study, the thermal stress in the TSV structure was measured by the wafer curvature method and its unique stress characteristics were compared to that of a Cu thin film structure. The thermo-mechanical characteristics of the Cu TSV structure were correlated to microstructure evolution during thermal cycling and the local plasticity in Cu in a triaxial stress state. These findings were confirmed by microstructure analysis of the Cu vias and finite element analysis (FEA) of the stress characteristics. In addition, the local plasticity and deformation in and around individual TSVs were measured by synchrotron x-ray microdiffraction to supplement the wafer curvature measurements. The importance and implication of the local plasticity and residual stress on TSV reliabilities are discussed for TSV extrusion and device keep-out zone (KOZ).Microelectronics Research Cente
Analysis of short pulse laser altimetry data obtained over horizontal path
Recent pulsed measurements of atmospheric delay obtained by ranging to the more realistic targets including a simulated ocean target and an extended plate target are discussed. These measurements are used to estimate the expected timing accuracy of a correlation receiver system. The experimental work was conducted using a pulsed two color laser altimeter
Thermomechanical Characterization And Modeling For TSV Structures
Continual scaling of devices and on-chip wiring has brought significant challenges for materials and processes beyond the 32-nm technology node in microelectronics. Recently, three-dimensional (3-D) integration with through-silicon vias (TSVs) has emerged as an effective solution to meet the future technology requirements. Among others, thermo-mechanical reliability is a key concern for the development of TSV structures used in die stacking as 3-D interconnects. This paper presents experimental measurements of the thermal stresses in TSV structures and analyses of interfacial reliability. The micro-Raman measurements were made to characterize the local distribution of the near-surface stresses in Si around TSVs. On the other hand, the precision wafer curvature technique was employed to measure the average stress and deformation in the TSV structures subject to thermal cycling. To understand the elastic and plastic behavior of TSVs, the microstructural evolution of the Cu vias was analyzed using focused ion beam (FIB) and electron backscattering diffraction (EBSD) techniques. Furthermore, the impact of thermal stresses on interfacial reliability of TSV structures was investigated by a shear-lag cohesive zone model that predicts the critical temperatures and critical via diameters.Microelectronics Research Cente
Recommended from our members
Imbibition dynamics of nano-particulate ink-jet drops on micro-porous media
Ink-jet printing of nano-metallic colloidal fluids on to
porous media such as coated papers has become a viable
method to produce conductive tracks for low-cost,
disposable printed electronic devices. However, the
formation of well-defined and functional tracks on an
absorbing surface is controlled by the drop imbibition
dynamics in addition to the well-studied post-impact drop
spreading behavior.
This study represents the first investigation of the realtime
imbibition of ink-jet deposited nano-Cu colloid drops
on to coated paper substrates. In addition, the same ink was
deposited on to a non-porous polymer surface as a control
substrate. By using high-speed video imaging to capture the
deposition of ink-jet drops, the time-scales of drop
spreading and imbibition were quantified and compared
with model predictions. The influences of the coating pore
size on the bulk absorption rate and nano-Cu particle
distribution have also been studied
Camera for QUasars in EArly uNiverse (CQUEAN)
We describe the overall characteristics and the performance of an optical CCD
camera system, Camera for QUasars in EArly uNiverse (CQUEAN), which is being
used at the 2.1 m Otto Struve Telescope of the McDonald Observatory since 2010
August. CQUEAN was developed for follow-up imaging observations of red sources
such as high redshift quasar candidates (z >= 5), Gamma Ray Bursts, brown
dwarfs, and young stellar objects. For efficient observations of the red
objects, CQUEAN has a science camera with a deep depletion CCD chip which
boasts a higher quantum efficiency at 0.7 - 1.1 um than conventional CCD chips.
The camera was developed in a short time scale (~ one year), and has been
working reliably. By employing an auto-guiding system and a focal reducer to
enhance the field of view on the classical Cassegrain focus, we achieve a
stable guiding in 20 minute exposures, an imaging quality with FWHM >= 0.6"
over the whole field (4.8' * 4.8'), and a limiting magnitude of z = 23.4 AB mag
at 5-sigma with one hour total integration time.Comment: Accepted for publication in PASP. 26 pages including 5 tables and 24
figure
Theoretical and experimental analyses of the performance of two-color laser ranging systems
The statistical properties of the signals reflected from the retroreflector equipped satellites were studied. It is found that coherence interference between pulse reflections from retroreflectors of different ranges on the array platform is the primary cause of signal fluctuations. The performance of a cross-correlation technique to estimate the differential propagation time is analyzed by considering both shot noise and speckle. For the retroreflector arrays, timing performance is dominated by interference induced speckle, and the differential propagation time cannot be resolved to better than the pulse widths of the received signals. The differential timing measurements obtained over a horizontal path are analyzed. The ocean-reflected pulse measurements obtained from the airborne two-color laser altimeter experiment are presented
- …