4,704 research outputs found
Deceptive Apparent Nonadiabatic Magnetization Process
We discuss the effect of the thermal environment on the low-temperature
response of the magnetization of uniaxial magnets to a time-dependent applied
magnetic field. At sufficiently low temperatures the staircase magnetization
curves observed in molecular magnets such as Mn_{12} and Fe_8 display little
temperature dependence. However the changes of the magnetization at each step
do not seem to be directly related to the probability for a quantum mechanical
nonadiabatic transition. In order to explain this deceptive apparent
nonadiabatic behavior, we study the quantum dynamics of the system in a thermal
environment and propose a relation between the observed magnetization steps and
the quantum mechanical transition probability due to the nonadiabatic
transition.Comment: 4 pages, 7 eps figure
Quantum Spin Dynamics and Quantum Computation
We describe a simulation method for a quantum spin model of a generic,
general purpose quantum computer. The use of this quantum computer simulator is
illustrated through several implementations of Grover's database search
algorithm. Some preliminary results on the stability of quantum algorithms are
presented.Comment: 6 pages, 4 figures ; Minor errors corrected and figures update
Charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4: Cooperative effects of electron correlations and lattice distortions
Combined effects of electron correlations and lattice distortions are
investigated on the charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4
theoretically in a two-dimensional 3/4-filled extended Hubbard model with
electron-lattice couplings. It is known that this material undergoes a phase
transition from a high-symmetry metallic state to a low-symmetry insulating
state with a horizontal-stripe charge order (CO) by lowering temperature. By
means of the exact-diagonalization method, we show that electron-phonon
interactions are crucial to stabilize the horizontal-stripe CO and to realize
the low-symmetry crystal structure.Comment: 7 peges, 7 figures, accepted for publication in Phys. Rev.
Quantum Annealing in the Transverse Ising Model
We introduce quantum fluctuations into the simulated annealing process of
optimization problems, aiming at faster convergence to the optimal state.
Quantum fluctuations cause transitions between states and thus play the same
role as thermal fluctuations in the conventional approach. The idea is tested
by the transverse Ising model, in which the transverse field is a function of
time similar to the temperature in the conventional method. The goal is to find
the ground state of the diagonal part of the Hamiltonian with high accuracy as
quickly as possible. We have solved the time-dependent Schr\"odinger equation
numerically for small size systems with various exchange interactions.
Comparison with the results of the corresponding classical (thermal) method
reveals that the quantum annealing leads to the ground state with much larger
probability in almost all cases if we use the same annealing schedule.Comment: 15 pages, RevTeX, 8 figure
Proposal for an interference experiment to test the applicability of quantum theory to event-based processes
We analyze a single-particle Mach-Zehnder interferometer experiment in which
the path length of one arm may change (randomly or systematically) according to
the value of an external two-valued variable , for each passage of a
particle through the interferometer. Quantum theory predicts an interference
pattern that is independent of the sequence of the values of . On the other
hand, corpuscular models that reproduce the results of quantum optics
experiments carried out up to this date show a reduced visibility and a shift
of the interference pattern depending on the details of the sequence of the
values of . The proposed experiment will show that: (1) it can be described
by quantum theory, and thus not by the current corpuscular models, or (2) it
cannot be described by quantum theory but can be described by the corpuscular
models or variations thereof, or (3) it can neither be described by quantum
theory nor by corpuscular models. Therefore, the proposed experiment can be
used to determine to what extent quantum theory provides a description of
observed events beyond the usual statistical level.Comment: Accepted for publication in J. Phys. Soc. Jp
Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: III. Interference Caused by a Double Pulse
In order to study consequences of the differences between the
ionic-to-neutral and neutral-to-ionic transitions in the one-dimensional
extended Peierls-Hubbard model with alternating potentials for the TTF-CA
complex, we introduce a double pulse of oscillating electric field in the
time-dependent Schr\"odinger equation and vary the interval between the two
pulses as well as their strengths. When the dimerized ionic phase is
photoexcited, the interference effect is clearly observed owing to the
coherence of charge density and lattice displacements. Namely, the two pulses
constructively interfere with each other if the interval is a multiple of the
period of the optical lattice vibration, while they destructively interfere if
the interval is a half-odd integer times the period, in the processes toward
the neutral phase. The interference is strong especially when the pulse is
strong and short because the coherence is also strong. Meanwhile, when the
neutral phase is photoexcited, the interference effect is almost invisible or
weakly observed when the pulse is weak. The photoinduced lattice oscillations
are incoherent due to random phases. The strength of the interference caused by
a double pulse is a key quantity to distinguish the two transitions and to
evaluate the coherence of charge density and lattice displacements.Comment: 16 pages, 8 figure
- …