4,704 research outputs found

    Deceptive Apparent Nonadiabatic Magnetization Process

    Full text link
    We discuss the effect of the thermal environment on the low-temperature response of the magnetization of uniaxial magnets to a time-dependent applied magnetic field. At sufficiently low temperatures the staircase magnetization curves observed in molecular magnets such as Mn_{12} and Fe_8 display little temperature dependence. However the changes of the magnetization at each step do not seem to be directly related to the probability for a quantum mechanical nonadiabatic transition. In order to explain this deceptive apparent nonadiabatic behavior, we study the quantum dynamics of the system in a thermal environment and propose a relation between the observed magnetization steps and the quantum mechanical transition probability due to the nonadiabatic transition.Comment: 4 pages, 7 eps figure

    Quantum Spin Dynamics and Quantum Computation

    Get PDF
    We describe a simulation method for a quantum spin model of a generic, general purpose quantum computer. The use of this quantum computer simulator is illustrated through several implementations of Grover's database search algorithm. Some preliminary results on the stability of quantum algorithms are presented.Comment: 6 pages, 4 figures ; Minor errors corrected and figures update

    Charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4: Cooperative effects of electron correlations and lattice distortions

    Full text link
    Combined effects of electron correlations and lattice distortions are investigated on the charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4 theoretically in a two-dimensional 3/4-filled extended Hubbard model with electron-lattice couplings. It is known that this material undergoes a phase transition from a high-symmetry metallic state to a low-symmetry insulating state with a horizontal-stripe charge order (CO) by lowering temperature. By means of the exact-diagonalization method, we show that electron-phonon interactions are crucial to stabilize the horizontal-stripe CO and to realize the low-symmetry crystal structure.Comment: 7 peges, 7 figures, accepted for publication in Phys. Rev.

    Quantum Annealing in the Transverse Ising Model

    Full text link
    We introduce quantum fluctuations into the simulated annealing process of optimization problems, aiming at faster convergence to the optimal state. Quantum fluctuations cause transitions between states and thus play the same role as thermal fluctuations in the conventional approach. The idea is tested by the transverse Ising model, in which the transverse field is a function of time similar to the temperature in the conventional method. The goal is to find the ground state of the diagonal part of the Hamiltonian with high accuracy as quickly as possible. We have solved the time-dependent Schr\"odinger equation numerically for small size systems with various exchange interactions. Comparison with the results of the corresponding classical (thermal) method reveals that the quantum annealing leads to the ground state with much larger probability in almost all cases if we use the same annealing schedule.Comment: 15 pages, RevTeX, 8 figure

    Proposal for an interference experiment to test the applicability of quantum theory to event-based processes

    Full text link
    We analyze a single-particle Mach-Zehnder interferometer experiment in which the path length of one arm may change (randomly or systematically) according to the value of an external two-valued variable xx, for each passage of a particle through the interferometer. Quantum theory predicts an interference pattern that is independent of the sequence of the values of xx. On the other hand, corpuscular models that reproduce the results of quantum optics experiments carried out up to this date show a reduced visibility and a shift of the interference pattern depending on the details of the sequence of the values of xx. The proposed experiment will show that: (1) it can be described by quantum theory, and thus not by the current corpuscular models, or (2) it cannot be described by quantum theory but can be described by the corpuscular models or variations thereof, or (3) it can neither be described by quantum theory nor by corpuscular models. Therefore, the proposed experiment can be used to determine to what extent quantum theory provides a description of observed events beyond the usual statistical level.Comment: Accepted for publication in J. Phys. Soc. Jp

    Phase Transition in a One-Dimensional Extended Peierls-Hubbard Model with a Pulse of Oscillating Electric Field: III. Interference Caused by a Double Pulse

    Full text link
    In order to study consequences of the differences between the ionic-to-neutral and neutral-to-ionic transitions in the one-dimensional extended Peierls-Hubbard model with alternating potentials for the TTF-CA complex, we introduce a double pulse of oscillating electric field in the time-dependent Schr\"odinger equation and vary the interval between the two pulses as well as their strengths. When the dimerized ionic phase is photoexcited, the interference effect is clearly observed owing to the coherence of charge density and lattice displacements. Namely, the two pulses constructively interfere with each other if the interval is a multiple of the period of the optical lattice vibration, while they destructively interfere if the interval is a half-odd integer times the period, in the processes toward the neutral phase. The interference is strong especially when the pulse is strong and short because the coherence is also strong. Meanwhile, when the neutral phase is photoexcited, the interference effect is almost invisible or weakly observed when the pulse is weak. The photoinduced lattice oscillations are incoherent due to random phases. The strength of the interference caused by a double pulse is a key quantity to distinguish the two transitions and to evaluate the coherence of charge density and lattice displacements.Comment: 16 pages, 8 figure
    corecore