1,435 research outputs found

    Multi-Phase Gas Dynamics in a Weak Barred Potential

    Get PDF
    The structure of the interstellar medium in the central kpc region of a galaxy with a weak bar-like potential is investigated taking into account realistic cooling and heating processes and the self-gravity of the gas. Using high resolution hydrodynamical simulations, it is revealed that the resonant structures (e.g. smooth spiral shocks and a nuclear ring) are very different from those seen in past numerical models where simple models of the ISM, i.e. non-self-gravitating, isothermal gas were assumed. We find that the pc-scale filaments and clumps form large scale spirals, which resemble those seen in real galaxies. The fine structures are different between the arms and in the nuclear region. The next generation millimeter interferometer (ALMA) may reveal the fine structures of the cold gas in nearby galaxies. We also find a large scale anisotropy in the gas temperature, which is caused due to non-circular velocity field of the gas.The damped orbit model based on the epicyclic approximation explains the distribution of the hot (> 10^4 K) and cold (< 100 K) gases appearing alternately around the galactic center. Because of the temperature anisotropy, cold gases observed by molecular lines do not necessarily represent the real gas distribution in galaxies. Position-Velocity diagrams depend strongly on the viewing angles. As a result, the rotational velocity inferred from the PV maps could be two times larger or smaller than the true circular velocity.Comment: 7 pages, 8 figures, to appear in PASJ, vol. 56, no.6 (2001

    Star formation efficiency in the Barred Spiral Galaxy NGC 4303

    Get PDF
    We present new 12^{12}CO(J=1-0) observations of the barred galaxy NGC 4303 using the Nobeyama 45m telescope (NRO45) and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The Hα\alpha images of barred spiral galaxies often show active star formation in spiral arms, but less so in bars. We quantify the difference by measuring star formation rate and efficiency at a scale where local star formation is spatially resolved. Our CO map covers the central 2\farcm3 region of the galaxy; the combination of NRO45 and CARMA provides a high fidelity image, enabling accurate measurements of molecular gas surface density. We find that star formation rate and efficiency are twice as high in the spiral arms as in the bar. We discuss this difference in the context of the Kennicutt-Schimidt (KS) law, which indicates a constant star formation rate at a given gas surface density. The KS law breaks down at our native resolution (∼\sim 250 pc), and substantial smoothing (to 500 pc) is necessary to reproduce the KS law, although with greater scatter.Comment: 17 pages, 10 figures, published by ApJ; http://adsabs.harvard.edu/abs/2010ApJ...721..383

    Magnetic ground state of pyrochlore oxides close to metal-insulator boundary probed by muon spin rotation

    Full text link
    Magnetism of ruthernium pyrochlore oxides A2Ru2O7 (A = Hg, Cd, Ca), whose electronic properties within a localized ion picture are characterized by non-degenerate t2g orbitals (Ru5+, 4d3) and thereby subject to geometrical frustration, has been investigated by muon spin rotation/relaxation (muSR) technique. The A cation (mostly divalent) was varied to examine the effect of covalency (Hg > Cd > Ca) on their electronic property. In a sample with A = Hg that exhibits a clear metal-insulator (MI) transition below >> 100 K (which is associated with a weak structural transition), a nearly commensurate magnetic order is observed to develop in accordance with the MI transition. Meanwhile, in the case of A = Cd where the MI transition is suppressed to the level of small anomaly in the resistivity, the local field distribution probed by muon indicates emergence of a certain magnetic inhomogeneity below {\guillemotright} 30 K. Moreover, in Ca2Ru2O7 that remains metallic, we find a highly inhomogeneous local magnetism below >>25 K that comes from randomly oriented Ru moments and thus described as a "frozen spin liquid" state. The systematic trend of increasing randomness and itinerant character with decreasing covalency suggests close relationship between these two characters. As a reference for the effect of orbital degeneracy and associated Jahn-Teller instability, we examine a tetravalent ruthernium pyrochlore, Tl2Ru2O7 (Ru4+, 4d4), where the result of muSR indicates a non-magnetic ground state that is consistent with the formation of the Haldane chains suggested by neutron diffraction experiment.Comment: 12 pages, 13 figure

    Will Nonlinear Peculiar Velocity and Inhomogeneous Reionization Spoil 21cm Cosmology from the Epoch of Reionization?

    Full text link
    The 21cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization ( 80% ionized).Comment: 2 figures, matches published PRL versio
    • …
    corecore