2,930 research outputs found

    Three-dimensional boundary layer analysis program Blay and its application

    Get PDF
    The boundary layer calculation program (BLAY) is a program code which accurately analyzes the three-dimensional boundary layer of a wing with an undefined plane. In comparison with other preexisting programs, the BLAY is characterized by the following: (1) the time required for computation is shorter than any other; (2) the program is adaptable to a parallel processing computer; and (3) the program is associated with a secondary accuracy in the z-direction. As a boundary layer modification to transonic nonviscous flow analysis programs, it is used to adjust viscous and nonviscous interference problems repeatedly. Its efficiency is an important factor in cost reduction in aircraft designing

    Dark filaments observed at 8.3mm and 3.1mm wavelength

    Get PDF
    Mapping of the sun was made at 3.1mm (98 GHz) and 8.3mm (36 GHz) wavelengths with a 45m dish radio telescope at the Nobeyama Cosmic Radio Observatory. The depressions associated with large H alpha filaments are derived to be -0.2 at 8.3mm and -0.05 at 3.1mm, which are darker than the values inferred by Raoult et al. (1979

    Observations of IRAS F10214+4724 at the Nobeyama millimeter array

    Get PDF
    F10214+4724 is an IRAS source at z=2.286 with L(sub FIR) approximately 10(exp 14) solar luminosity. The CO(3-2) emission was detected at the NRAO 12-m telescope, and its molecular gas mass was estimated to be (1-3)x10(exp 11) solar mass. This object is unique and important because it is the first high-z object from which molecular line emission is detected and it enables us to investigate molecular gas content, star forming material, at an early stage of galactic evolution. If IRAS F10214+4724 is a primeval galaxy at the formation process, it is possible the gas has not been collapsed yet to the galactic scale. On the other hand, it is also possible IRAS F10214+4724 is a merging or interacting system like the most of ultra-luminous infrared galaxies. However, since the first detection was made with a medium size single-dish telescope, the precise position, extent, and distribution of the molecular gas had not been determined. The aim of our aperture synthesis observations is therefore to determine position and distribution of molecular gas

    Charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4: Cooperative effects of electron correlations and lattice distortions

    Full text link
    Combined effects of electron correlations and lattice distortions are investigated on the charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4 theoretically in a two-dimensional 3/4-filled extended Hubbard model with electron-lattice couplings. It is known that this material undergoes a phase transition from a high-symmetry metallic state to a low-symmetry insulating state with a horizontal-stripe charge order (CO) by lowering temperature. By means of the exact-diagonalization method, we show that electron-phonon interactions are crucial to stabilize the horizontal-stripe CO and to realize the low-symmetry crystal structure.Comment: 7 peges, 7 figures, accepted for publication in Phys. Rev.

    CO mapping of the nuclear region of NGC 6946 and IC 342 with Nobeyama millimeter array

    Get PDF
    CO observations of nearby galaxies with nuclear active star forming regions (and starburst galaxies) with angular resolutions around 7 seconds revealed that molecular bars with a length of a few kiloparsecs have been formed in the central regions of the galaxies. The molecular bar is interpreted as part of shock waves induced by an oval or barred potential field. By shock dissipation or dissipative cloud-cloud collisions, the molecular gas gains an infall motion and the nuclear star formation activity is fueled. But the distribution and kinematics of the molecular gas in the nuclear regions, which are sites of active star formation, remain unknown. Higher angular resolutions are needed to investigate the gas in the nuclear regions. Researchers made aperture synthesis observations of the nuclear region of the late-type spiral galaxies NGC 6946 and IC 342 with resolutions of 7.6 seconds x 4.2 seconds (P.A. = 147 deg) and 2.4 seconds x 2.3 seconds (P.A. = 149 deg), respectively. The distances to NGC 6496 and IC 342 are assumed to be 5.5 Mpc and 3.9 Mpc, respectively. Researchers have found 100-300 pc nuclear gas disk and ring inside a few kpc molecular gas bars. Researchers present the results of the observations and propose a possible mechanism of active star formation in the nuclear region

    Incommensurate Mott Insulator in One-Dimensional Electron Systems close to Quarter Filling

    Full text link
    A possibility of a metal-insulator transition in molecular conductors has been studied for systems composed of donor molecules and fully ionized anions with an incommensurate ratio close to 2:1 based on a one-dimensional extended Hubbard model, where the donor carriers are slightly deviated from quarter filling and under an incommensurate periodic potential from the anions. By use of the renormalization group method, interplay between commensurability energy on the donor lattice and that from the anion potential has been studied and it has been found that an "incommensurate Mott insulator" can be generated. This theoretical finding will explain the metal-insulator transition observed in (MDT-TS)(AuI2_2)0.441_{0.441}.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jpn. at December 24 200
    • …
    corecore