77 research outputs found

    A dynamic perfusion based blood-brain barrier model for cytotoxicity testing and drug permeation

    Get PDF
    The blood-brain barrier (BBB) serves to protect and regulate the CNS microenvironment. The development of an in-vitro mimic of the BBB requires recapitulating the correct phenotype of the in-vivo BBB, particularly for drug permeation studies. However the majority of widely used BBB models demonstrate low transendothelial electrical resistance (TEER) and poor BBB phenotype. The application of shear stress is known to enhance tight junction formation and hence improve the barrier function. We utilised a high TEER primary porcine brain microvascular endothelial cell (PBMEC) culture to assess the impact of shear stress on barrier formation using the Kirkstall QuasiVivo 600 (QV600) multi-chamber perfusion system. The application of shear stress resulted in a reorientation and enhancement of tight junction formation on both coverslip and permeable inserts, in addition to enhancing and maintaining TEER for longer, when compared to static conditions. Furthermore, the functional consequences of this was demonstrated with the reduction in flux of mitoxantrone across PBMEC monolayers. The QV600 perfusion system may service as a viable tool to enhance and maintain the high TEER PBMEC system for use in in-vitro BBB models

    Precision dosing of venlafaxine during pregnancy: a pharmacokinetics modelling approach

    Get PDF
    Objectives: Venlafaxine exposure through gestation is affected by the longitudinal changes in maternal physiology. Confounding treatment is also the impact of CYP2D6 polymorphisms affecting plasma concentrations of venlafaxine. Methods: A pharmacokinetic modelling approach was employed to assess variations in maternal and foetal cord venlafaxine levels throughout gestation and to identify appropriate doses to maintain venlafaxine levels within the therapeutic range. Key findings: Throughout gestation, there was a significant decrease in simulated venlafaxine trough plasma concentrations in both extensive metaboliser (EM) and ultra-rapid metaboliser (UM) phenotypes. Approximately 70%–87% of EM and UM phenotypes exhibited trough venlafaxine plasma concentrations below the therapeutic level (<25 ng/ml), which increased to 96% at week 30. While for poor metabolizer (PM) phenotypes, the percentage was approximately 4%. Conclusion: The standard daily dose of 75 mg required adjustment for all phenotypes examined during gestation. A daily dose of 37.5–112.5 mg is appropriate for PM throughout pregnancy. For EM, a dose of 225 mg daily in the first trimester, 262.5 mg daily in the second trimester, and 375 mg daily in the third trimester is suggested to be optimal. For UM, a dose of 375 mg daily throughout gestation is suggested to be optimal

    Fixed-dose combination orally disintegrating tablets to treat cardiovascular disease:formulation, in vitro characterization and physiologically based pharmacokinetic modelling to assess bioavailability

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of death among men and women worldwide. In CVD, hypertension and dyslipidemia commonly coexist and are managed through coadministration of amlodipine and atorvastatin, respectively. The case for fixed-dose combination (FDC) oral dosage forms and orally disintegrating tablet (ODT) technology to enhance outcomes and compliance is strong. This work follows the development and characterization of single and FDC ODTs containing amlodipine and atorvastatin, followed by bioequivalence comparison between these single and FDC formulations, using in vitro dissolution and Caco-2 apparent permeability (Papp) and in silico physiologically based pharmacokinetic modeling approaches. ODTs containing amlodipine (5 mg) and atorvastatin (10 mg) either alone or in combination rapidly disintegrated (<30 s) while displaying a radial crushing strength in excess of 100 N and friability ≤1%. In vitro dissolution test was performed in fasted and fed-state simulated intestinal fluid (FeSSIF) and analyzed using high-performance liquid chromatography. Dissolution profiles for single and FDC ODTs were compared using US FDA recommended difference (f1) and similarity (f2) factor testing for bioequivalence. In all cases, there was no difference in active pharmaceutical ingredient dissolution between single or FDC ODTs, with the exception of amlodipine in FeSSIF. Pharmacokinetic clinical trial simulations were conducted using Simcyp (Version 14), incorporating Papp and dissolution data. Simulated clinical trials in healthy volunteers showed no difference in bioavailability based on pharmacokinetic parameters between single and combination doses with either active pharmaceutical ingredient. An increase in Cmax and AUC for atorvastatin in fed subjects was attributed to extended transit along the gut lumen and reduced atorvastatin metabolism due to lower CYP3A4 expression at more distal small intestine absorption sites. The results demonstrated bioequivalence of an FDC ODT for amlodipine and atorvastatin, while highlighting several limitations of f1 and f2 bioequivalence testing and strengths of mechanistic pharmacokinetic modeling for oral drug absorption

    Controlling calibration errors in gravitational-wave detectors by precise location of calibration forces

    Get PDF
    We present results of finite element analysis simulations which could lead to more accurate calibration of interferometric gravitational wave detectors. Calibration and actuation forces applied to the interferometer test masses cause elastic deformation, inducing errors in the calibration. These errors increase with actuation frequency, and can be greater than 50% at frequencies above a few kilohertz. We show that they can be reduced significantly by optimizing the position at which the forces are applied. The Advanced LIGO [1] photon calibrators use a two-beam configuration to reduce the impact of local deformations of the test mass surface. The position of the beams over the test mass can be chosen such both the local and the bulk induced elastic deformation are minimized. Our finite element modeling indicates that with two beams positioned within ±1 mm of their optimal locations, calibration errors due to test mass elastic deformation can be kept below 1% for frequencies up to 3.5 kHz. We thus show that precise control of the location of calibration forces could considerably improve calibration accuracy, especially at high frequencies

    Precision dosing-based optimisation of paroxetine during pregnancy for poor and ultrarapid CYP2D6 metabolisers:a virtual clinical trial pharmacokinetics study

    Get PDF
    Objective: Paroxetine has been demonstrated to undergo gestation-related reductions in plasma concentrations, to an extent which is dictated by the polymorphic state of CYP 2D6. However, knowledge of appropriate dose titrations is lacking. Methods: A pharmacokinetic modelling approach was applied to examine gestational changes in trough plasma concentrations for CYP 2D6 phenotypes, followed by necessary dose adjustment strategies to maintain paroxetine levels within a therapeutic range of 20–60 ng/ml. Key findings: A decrease in trough plasma concentrations was simulated throughout gestation for all phenotypes. A significant number of ultrarapid (UM) phenotype subjects possessed trough levels below 20 ng/ml (73–76%) compared to extensive metabolisers (EM) (51–53%). Conclusions: For all phenotypes studied, there was a requirement for daily doses in excess of the standard 20 mg dose throughout gestation. For EM, a dose of 30 mg daily in trimester 1 followed by 40 mg daily in trimesters 2 and 3 is suggested to be optimal. For poor metabolisers (PM), a 20 mg daily dose in trimester 1 followed by 30 mg daily in trimesters 2 and 3 is suggested to be optimal. For UM, a 40 mg daily dose throughout gestation is suggested to be optimal

    Quetiapine dose optimisation during gestation:a pharmacokinetic modelling study

    Get PDF
    Objectives: The second-generation antipsychotic quetiapine has been demonstrated to undergo gestation-related changes in pharmacokinetics. This study applied pharmacokinetic modelling principles to investigate the mechanism of these changes and to propose new dosing strategies to counteract these changes. Methods: A pharmacokinetic modelling approach was implemented using virtual population groups. Changes in quetiapine trough plasma concentration during gestation were quantified across all trimesters, and dose adjustment strategies were applied to counteract these changes by targeting a therapeutic range of 50–500 ng/ml throughout gestation. Key findings: The application of the model during gestation predicted a decrease in trough concentration. A maximum decrease of 58% was predicted during trimester 2, and being associated with a statistically significant decrease in oral clearance at gestation week 25, 204 l/h ± 100.8 l/h compared with non-pregnant subjects, 121.9 l/h ± 51.8 l/h. A dosing optimisation strategy identified that dose increases to 500–700 mg twice daily would result in 32–55% of subjects possessing trough concentration in excess of 50 ng/ml. Conclusions: Quetiapine doses in pregnancy should be increased to 500–700 mg twice daily to counteract a concomitant increase in metabolic clearance, increase in volume of distribution and decrease in plasma protein binding

    Design of experiments to study the impact of process parameters on droplet size and development of non-invasive imaging techniques in tablet coating

    Get PDF
    Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats
    • …
    corecore