9,069 research outputs found
4,5,12,13-Tetrabromo[2.2]paracyclophane - A New Bis(aryne) Equivalent
The reaction of 2 with nBuLi at -78°C generates aryne intermediates within the aromatic rings of [2.2]paracyclophane which are trapped in Diels-Alder reactions with dienes like furan, 1,9-diphenylisobenzofuran, or cyclopentadiene. Reductive deoxygenation with low-valent titanium reagents or TMSI converts the adducts of furan and isobenzofuran into anti-[2.2]paracyclophanes 4 and 5, respectively. The reaction of two aryne intermediates with [2.2](2,5)furanophane (7) yields 8 with three [2.2]paracyclophane units arranged in a stair-like fashion; yet, in this compound the highly shielded oxygen atoms cannot be removed anymore by reduction
Irradiated atmospheres of accreting magnetic white dwarfs with an application to the polar AM Herculis
We present a pilot study of atmospheres of accreting magnetic white dwarfs irradiated by intense fluxes at ultraviolet to infrared wavelengths. The model uses a standard LTE stellar atmosphere code which is expanded by introducing an angle-dependent external radiation source. The present results are obtained for an external source with the spectral shape of a 10 000 K blackbody and a freely adjustable spectral flux. The model provides an explanation for the observed largely filled-up Lyman lines in the prototype polar AM Herculis during its high states. It also confirms the hypotheses (i) that irradiation by cyclotron radiation and other radiation sources is the principle cause for the large heated polar caps surrounding the accretion spots on white dwarfs in polars and (ii) that much of the reprocessed light appears in the far ultraviolet and not in the soft X-ray regime as suggested in the original simple theories. We also briefly discuss the role played by hard X-rays in heating the polar cap
Theory of ferromagnetism in (A,Mn)B semiconductors
A brief review of theory of ferromagnetism of dilute magnetic semiconductors
of the form (A,Mn)B based on the double exchange model is first given. A
systematic investigation of the phenomena extending the current theory is
outlined. We begin with an investigation of the regions of instability of the
nonmagnetic towards the ferromagnetic state of a system of Mn-atoms doped in
AB-type semiconductor. A self-consistent many-body theory of the ferromagnetic
state is then developed, going beyond the mean field approaches by including
fluctuations of the Mn-spins and the itinerant hole-gas. A functional theory
suitable for computation of system properties such as Curie temperature as a
function of hole and the Mn-concentration, spin-current, etc. is formulated.Comment: 16 page
Diversity of chemistry and excitation conditions in the high-mass star forming complex W33
The object W33 is a giant molecular cloud that contains star forming regions
at various evolutionary stages from quiescent clumps to developed H II regions.
Since its star forming regions are located at the same distance and the primary
material of the birth clouds is probably similar, we conducted a comparative
chemical study to trace the chemical footprint of the different phases of
evolution. We observed six clumps in W33 with the Atacama Pathfinder Experiment
(APEX) telescope at 280 GHz and the Submillimeter Array (SMA) at 230 GHz. We
detected 27 transitions of 10 different molecules in the APEX data and 52
transitions of 16 different molecules in the SMA data. The chemistry on scales
larger than 0.2 pc, which are traced by the APEX data, becomes more
complex and diverse the more evolved the star forming region is. On smaller
scales traced by the SMA data, the chemical complexity and diversity increase
up to the hot core stage. In the H II region phase, the SMA spectra resemble
the spectra of the protostellar phase. Either these more complex molecules are
destroyed or their emission is not compact enough to be detected with the SMA.
Synthetic spectra modelling of the HCO transitions, as detected with the
APEX telescope, shows that both a warm and a cold component are needed to
obtain a good fit to the emission for all sources except for W33 Main1. The
temperatures and column densities of the two components increase during the
evolution of the star forming regions. The integrated intensity ratios
NH(32)/CS(65) and
NH(32)/HCO(43) show clear trends as a
function of evolutionary stage, luminosity, luminosity-to-mass ratio, and
H peak column density of the clumps and might be usable as chemical
clocks.Comment: 66 pages, 28 figures, 8 tables, accepted for publication at A&
Influence of non-local exchange on RKKY interactions in III-V diluted magnetic semiconductors
The RKKY interaction between substitutional Mn local moments in GaAs is both
spin-direction-dependent and spatially anisotropic. In this Letter we address
the strength of these anisotropies using a semi-phenomenological tight-binding
model which treats the hybridization between Mn d-orbitals and As p-orbitals
perturbatively and accounts realistically for the non-local exchange
interaction between their spins. We show that exchange non-locality,
valence-band spin-orbit coupling, and band-structure anisotropy all play a role
in determining the strength of both effects. We use these results to estimate
the degree of ground-state magnetization suppression due to frustrating
interactions between randomly located Mn ions.Comment: 4 pages RevTeX, 2 figures included, v2: replacement because of font
proble
APP Expression in Primary Neuronal Cell Cultures fromP6 Mice during in vitro Differentiation
Primary neuronal cell cultures from P6 mice were investigated in order to study amyloid protein precursor (APP) gene expression in differentiating neurons. Cerebellar granule cells which strongly express APP 695 allowed the identification of three distinct isoforms of neuronal APP 695. The high-molecular-weight form of APP 695 is sialylated. The expression pattern of neuronal APP 695 changes during in vitro differentiation. Sialylated forms become more abundant upon longer cultivation time. The secreted forms of sialylated, neuronal APP 695 are shown to comigrate with APP isolated from cerebrospinal fluid. We suggest that the different sialylation states of APP 695 may reflect the modulation of cell-cell and cell-substrate interactions during in vitro differentiation and regeneration
Cotunneling at resonance for the single-electron transistor
We study electron transport through a small metallic island in the
perturbative regime. Using a recently developed diagrammatic technique, we
calculate the occupation of the island as well as the conductance through the
transistor in forth order in the tunneling matrix elements, a process referred
to as cotunneling. Our formulation does not require the introduction of a
cut-off. At resonance we find significant modifications of previous theories
and good agreement with recent experiments.Comment: 5 pages, Revtex, 5 eps-figure
- …