4,980 research outputs found

    Classification of zero-energy resonances by dissociation of Feshbach molecules

    Full text link
    We study the dissociation of Feshbach molecules by a magnetic field sweep across a zero-energy resonance. In the limit of an instantaneous magnetic field change, the distribution of atomic kinetic energy can have a peak indicating dominance of the molecular closed-channel spin configuration over the entrance channel. The extent of this dominance influences physical properties such as stability with respect to collisions, and so the readily measurable presence or absence of the corresponding peak provides a practical method of classifying zero-energy resonances. Currently achievable ramp speeds, e.g. those demonstrated by Duerr et al. [Phys. Rev. A 70, 031601 (2005)], are fast enough to provide magnetic field changes that may be interpreted as instantaneous. We study the transition from sudden magnetic field changes to asymptotically wide, linear ramps. In the latter limit, the predicted form of the atomic kinetic energy distribution is independent of the specific implementation of the two-body physics, provided that the near-resonant scattering properties are properly accounted for.Comment: 10 pages, 5 eps figure

    The search for planetary mass companions to field brown dwarfs with HST/NICMOS

    Full text link
    We present the results of a high-resolution spectral differential imaging survey of 12 nearby, relatively young field L dwarfs (<1 Gyr) carried out with HST/NICMOS to search for planetary mass companions at small physical separations from their host. The survey resolved two brown dwarf binaries: the L dwarf system Kelu-1AB and the newly discovered L/T transition system 2MASS J031059+164815AB. For both systems common proper motion has already been confirmed in follow-up observations which have been published elsewhere. The derived separations of the binaries are smaller than 6 AU and consistent with previous brown dwarf binary statistics. Their mass ratios of q > 0.8 confirm the preference for equal mass systems similar to a large number of other surveys. Furthermore, we found tentative evidence for a companion to the L4 dwarf 2MASS W033703-175807, straddling the brown dwarf/planetary mass boundary and revealing an uncommonly low mass ratio system (q ~ 0.2) compared to the vast majority of previously found brown dwarf binaries. With a derived minimum mass of 10 - 15 Mjup, a planetary nature of the secondary cannot be ruled out yet. However, it seems more likely to be a very low mass brown dwarf secondary at the border of the spectral T/Y transition regime, primarily due to its similarities to recently found very cool T dwarfs. This would make it one of the closest resolved brown dwarf binaries (0.087" /pm/pm 0.015", corresponding to 2.52 ±\pm 0.44 AU at a distance of 29 pc) with the coolest (Teff ~ 600-630 K) and least massive companion to any L or T dwarf.Comment: 33 pages, 8 figures, 2 tables, accepted for publication by Ap

    Dynamics of Natural Killer cell receptor revealed by quantitative analysis of photoswitchable protein

    Get PDF
    Natural Killer (NK) cell activation is dynamically regulated by numerous activating and inhibitory surface receptors that accumulate at the immune synapse. Quantitative analysis of receptor dynamics has been limited by methodologies which rely on indirect measurements such as fluorescence recovery after photobleaching. Here, we report a novel approach to study how proteins traffic to and from the immune synapse using NK cell receptors tagged with the photoswitchable fluorescent protein tdEosFP, which can be irreversibly photoswitched from a green to red fluorescent state by ultraviolet light. Thus, following a localized switching event, the movement of the photoswitched molecules can be temporally and spatially resolved by monitoring fluorescence in two regions of interest. By comparing images with mathematical models, we evaluated the diffusion coefficient of the receptor KIR2DL1 (0.23 +- 0.06 micron^2/s) and assessed how synapse formation affects receptor dynamics. Our data conclude that the inhibitory NK cell receptor KIR2DL1 is continually trafficked into the synapse and remains surprisingly stable there. Unexpectedly however, in NK cells forming synapses with multiple target cells simultaneously, KIR2DL1 at one synapse can relocate to another synapse. Thus, our results reveal a previously undetected inter-synaptic exchange of protein.Comment: 25 pages, 5 figure

    Three body problem in a dilute Bose-Einstein condensate

    Get PDF
    We derive the explicit three body contact potential for a dilute condensed Bose gas from microscopic theory. The three body coupling constant exhibits the general form predicted by T.T. Wu [Phys. Rev. 113, 1390 (1959)] and is determined in terms of the amplitudes of two and three body collisions in vacuum. In the present form the coupling constant becomes accessible to quantitative studies which should provide the crucial link between few body collisions and the stability of condensates with attractive two body forces

    Random Hierarchical Matrices: Spectral Properties and Relation to Polymers on Disordered Trees

    Full text link
    We study the statistical and dynamic properties of the systems characterized by an ultrametric space of states and translationary non-invariant symmetric transition matrices of the Parisi type subjected to "locally constant" randomization. Using the explicit expression for eigenvalues of such matrices, we compute the spectral density for the Gaussian distribution of matrix elements. We also compute the averaged "survival probability" (SP) having sense of the probability to find a system in the initial state by time tt. Using the similarity between the averaged SP for locally constant randomized Parisi matrices and the partition function of directed polymers on disordered trees, we show that for times t>tcrt>t_{\rm cr} (where tcrt_{\rm cr} is some critical time) a "lacunary" structure of the ultrametric space occurs with the probability 1−const/t1-{\rm const}/t. This means that the escape from some bounded areas of the ultrametric space of states is locked and the kinetics is confined in these areas for infinitely long time.Comment: 7 pages, 2 figures (the paper is essentially reworked

    Hybrid paramagnon phonon modes at elevated temperatures in EuTiO3

    Full text link
    EuTiO3 (ETO) has recently experienced an enormous revival of interest because of its possible multiferroic properties which are currently in the focus of research. Unfortunately ETO is an unlikely candidate for enlarged multifunctionality since the mode softening - typical for ferroelectrics - remains incomplete, and the antiferromagnetic properties appear at 5.5K only. However, a strong coupling between lattice and Eu spins exists and leads to the appearance of a magnon-phonon-hybrid mode at elevated temperatures as evidenced by electron paramagnetic resonance (EPR), muon spin rotation ({\mu}SR) experiments and model predictions based on a coupled spin-polarizability Hamiltonian. This novel finding supports the notion of strong magneto-dielectric (MD) effects being realized in ETO and opens new strategies in material design and technological applications.Comment: 9 pages, 4 figure

    Nonlocal Kinetic Equation and Simulations of Heavy Ion Reactions

    Get PDF
    A kinetic equation which combines the quasiparticle drift of Landau's equation with a dissipation governed by a nonlocal and noninstantaneous scattering integral in the spirit of Enskog corrections is discussed. Numerical values of the off-shell contribution to the Wigner distribution, of the collision duration and of the collision nonlocality are presented for different realistic potentials. On preliminary results we show that simulations of quantum molecular dynamics extended by the nonlocal treatment of collisions leads to a broader proton distribution bringing the theoretical spectra closer towards the experimental values than the local approach.Comment: Proceedings of the Erice School, published as Vol. 42 of "Progress in Particle and Nuclear Physics" by ELSEVIE

    Production of three-body Efimov molecules in an optical lattice

    Full text link
    We study the possibility of associating meta-stable Efimov trimers from three free Bose atoms in a tight trap realised, for instance, via an optical lattice site or a microchip. The suggested scheme for the production of these molecules is based on magnetically tunable Feshbach resonances and takes advantage of the Efimov effect in three-body energy spectra. Our predictions on the energy levels and wave functions of three pairwise interacting 85Rb atoms rely upon exact solutions of the Faddeev equations and include the tightly confining potential of an isotropic harmonic atom trap. The magnetic field dependence of these energy levels indicates that it is the lowest energetic Efimov trimer state that can be associated in an adiabatic sweep of the field strength. We show that the binding energies and spatial extents of the trimer molecules produced are comparable, in their magnitudes, to those of the associated diatomic Feshbach molecule. The three-body molecular state follows Efimov's scenario when the pairwise attraction of the atoms is strengthened by tuning the magnetic field strength.Comment: 21 pages, 8 figures (final version

    Shortest Path Computation with No Information Leakage

    Get PDF
    Shortest path computation is one of the most common queries in location-based services (LBSs). Although particularly useful, such queries raise serious privacy concerns. Exposing to a (potentially untrusted) LBS the client's position and her destination may reveal personal information, such as social habits, health condition, shopping preferences, lifestyle choices, etc. The only existing method for privacy-preserving shortest path computation follows the obfuscation paradigm; it prevents the LBS from inferring the source and destination of the query with a probability higher than a threshold. This implies, however, that the LBS still deduces some information (albeit not exact) about the client's location and her destination. In this paper we aim at strong privacy, where the adversary learns nothing about the shortest path query. We achieve this via established private information retrieval techniques, which we treat as black-box building blocks. Experiments on real, large-scale road networks assess the practicality of our schemes.Comment: VLDB201
    • …
    corecore