150 research outputs found

    The impact of altered management on long-term agricultural soil carbon stocks

    Get PDF
    Land use in general and particularly agricultural practices can significantly influence soil carbon storage. In this paper, we investigate the long-term effects of management changes on soil carbon stock dynamics on a Swedish farm where C concentrations were measured in 1956 at 124 points in a regular grid. The soil was re-sampled at 65 points in 1984 and at all grid points in 2001. Before 1956 most of the fodder for dairy cattle was produced on the farm and crop rotations were dominated by perennial grass leys and spring cereals with manure addition. In 1956 all animals were sold, crop rotations were thereafter dominated by wheat, barley and rapeseed. Spatial variation in topsoil C concentration decreased significantly between 1956 and 2001. C stocks declined in fields with initially large C stocks but did not change significantly in fields with moderate C stocks. In the latter fields, soil C concentrations declined from 1956 to 1984, but increased slightly thereafter according to both measurements and simulations. Thus, the decline in C input due to the altered management in 1956 was partly compensated for by increasing crop yields and management changes, resulting in increased C input during the last 20 years. A soil carbon balance model (ICBM) was used to describe carbon dynamics during 45 years. Yield records were transformed to soil carbon input using allometric functions. Topsoil C concentrations ranging between 1.8 and 2.4% (depending on individual field properties) seemed to be in dynamic equilibrium with C input under recent farming and climatic conditions. Subsoil C concentrations seemed to be unaffected by the management changes

    Carbon sequestration in soils and climate change mitigation-Definitions and pitfalls

    Get PDF
    The term carbon (C) sequestration has not just become a buzzword but is something of a siren's call to scientific communicators and media outlets. Carbon sequestration is the removal of C from the atmosphere and the storage, for example, in soil. It has the potential to partially compensate for anthropogenic greenhouse gas emissions and is, therefore, an important piece in the global climate change mitigation puzzle. However, the term C sequestration is often used misleadingly and, while likely unintentional, can lead to the perpetuation of biased conclusions and exaggerated expectations about its contribution to climate change mitigation efforts. Soils have considerable potential to take up C but many are also in a state of continuous loss. In such soils, measures to build up soil C may only lead to a reduction in C losses (C loss mitigation) rather than result in real C sequestration and negative emissions. In an examination of 100 recent peer-reviewed papers on topics surrounding soil C, only 4% were found to have used the term C sequestration correctly. Furthermore, 13% of the papers equated C sequestration with C stocks. The review, further, revealed that measures leading to C sequestration will not always result in climate change mitigation when non-CO2 greenhouse gases and leakage are taken into consideration. This paper highlights potential pitfalls when using the term C sequestration incorrectly and calls for accurate usage of this term going forward. Revised and new terms are suggested to distinguish clearly between C sequestration in soils, SOC loss mitigation, negative emissions, climate change mitigation, SOC storage, and SOC accrual to avoid miscommunication among scientists and stakeholder groups in future.Sequestration of carbon in soils can lead to climate change mitigation or even negative emissions. However, not all measures enhancing soil C result in such C uptake from the atmosphere or negative emissions. At some site measures may only reduce C losses (C loss mitigation) or may be counterbalanced by elevated other greenhouse gas emissions. A more rigorous use of the terms surrounding C sequestration in soils is prerequisite in order to enhance understanding of climate change mitigation efforts in the land-use sector among stakeholders in science, politics, and society.imag

    Soil microbial biomass and community structure affected by repeated additions of sewage sludge in four Swedish long-term field experiments

    Get PDF
    Soil organic matter is a key attribute of soil fertility. The pool of soil organic C can be increased, either by mineral fertilisers or by adding organic amendments such as sewage sludge. Sewage sludge has positive effects on agricultural soils through the supply of organic matter and essential plant nutrients, but sludge may also contain unwanted heavy metals, xenobiotic substances and pathogens. One obvious effect of long-term sewage sludge addition is a decrease in soil pH, caused by N mineralisation followed by nitrification, sulphate formation and presence of organic acids with the organic matter added. The objective of this study was to investigate the effect of sewage sludge on the microbial biomass and community structure

    Four Swedish long-term field experiments with sewage sludge reveal a limited effect on soil microbes and on metal uptake by crops

    Get PDF
    Purpose: This study aims to study the effect of sewage sludge amendment on crop yield and on microbial biomass and community structure in Swedish agricultural soils. Materials and methods Topsoil samples (0-0.20 m depth) from four sites where sewage sludge had been repeatedly applied during 14-53 years were analysed for total C, total N, pH and phospholipid fatty acids (PLFAs). Heavy metals were analysed in both soil and plant samples, and crop yields were recorded. Results and discussion At all four sites, sewage sludge application increased crop yield and soil organic carbon. Sludge addition also resulted in elevated concentrations of some heavy metals (mainly Cu and Zn) in soils, but high concentrations of metals (Ni and Zn) in plant materials were almost exclusively found in the oldest experiment, started in 1956. PLFA analysis showed that themicrobial community structure was strongly affected by changes in soil pH. At those sites where sewage sludge had caused low pH, Gram-positive bacteria were more abundant. However, differences in community structure were larger between sites than between the treatments. Conclusions: At all four sites, long-term sewage sludge application increased the soil organic carbon and nitrogen content, microbial biomass and crop yield. Long-term sewage sludge application led to a decrease in soil pH. Concentrations of some metals had increased significantly with sewage sludge application at all sites, but the amounts of metals added to soil with sewage sludge were found not to be toxic for microbes at any site

    Phosphorus fertilisation under nitrogen limitation can deplete soil carbon stocks: evidence from Swedish meta-replicated long-term field experiments

    Get PDF
    Increasing soil organic carbon (SOC) in agricultural soils can mitigate atmospheric CO2 concentration and also contribute to increased soil fertility and ecosystem resilience. The role of major nutrients in SOC dynamics is complex, due to simultaneous effects on net primary productivity (NPP) that influence crop residue carbon inputs and in the rate of heterotrophic respiration (carbon outputs). This study investigated the effect on SOC stocks of three different levels of phosphorus and potassium (PK) fertilisation rates in the absence of nitrogen fertilisation and of three different levels of nitrogen fertiliser in the absence of PK fertiliser. This was done by analysing data from 10 meta-replicated Swedish long-term field experiments (> 45 years). With N fertilisation, SOC stocks followed yield increases. However, for all PK levels, we found average SOC losses ranging from 0.04 +/- 0.09 Mg ha(-1) yr(-1) (ns) for the lowest to 0.09 +/- 0.07 Mg ha(-1) yr(-1) (p = 0.008) for the highest application rate, while crop yields as a proxy for carbon input increased significantly with PK fertilisation by 1, 10 and 15 %. We conclude that SOC dynamics are mainly output-driven in the PK-fertilised regime but mostly input-driven in the N-fertilised regime, due to the much more pronounced response of NPP to N than to PK fertilisation. It has been established that P rather than K is the element affecting ecosystem carbon fluxes, where P fertilisation has been shown to (i) stimulate heterotrophic respiration, (ii) reduce the abundance of arbuscular mycorrhizal fungi and (iii) decrease the crop root : shoot ratio, leading to higher root-derived carbon input. The higher export of N in the PK-fertilised plots in this study could (iv) have led to increased N mining and thus mineralisation of organic matter. More integrated experiments are needed to gain a better understanding of the relative importance of each of the above-mentioned mechanisms leading to SOC losses after P addition

    Qualitative and quantitative response of soil organic carbon to 40 years of crop residue incorporation under contrasting nitrogen fertilisation regimes

    Get PDF
    Crop residue incorporation (RI) is recommended to increase soil organic carbon (SOC) stocks. However, the positive effect on SOC is often reported to be relatively low and alternative use of crop residues, e.g. as a bioenergy source, may be more climate smart. In this context, it is important to understand: (i) the response of SOC stocks to long-term crop residue incorporation; and (ii) the qualitative SOC change, in order to judge the sustainability of this measure. We investigated the effect of 40 years of RI combined with five different nitrogen (N) fertilisation levels on SOC stocks and five SOC fractions differing in turnover times on a clay loam soil in Padua, Italy. The average increase in SOC stock in the 0–30cm soil layer was 3.1Mgha–1 or 6.8%, with no difference between N fertilisation rates. Retention coefficients of residues did not exceed 4% and decreased significantly with increasing N rate (R2=0.49). The effect of RI was higher after 20 years (4.6Mgha–1) than after 40 years, indicating that a new equilibrium has been reached and no further gains in SOC can be expected. Most (92%) of the total SOC was stored in the silt and clay fraction and 93% of the accumulated carbon was also found in this fraction, showing the importance of fine mineral particles for SOC storage, stabilisation and sequestration in arable soils. No change was detected in more labile fractions, indicating complete turnover of the annual residue-derived C in these fractions under a warm humid climate and in a highly base-saturated soil. The applied fractionation was thus useful to elucidate drivers and mechanisms of SOC formation and stabilisation. We conclude that residue incorporation is not a significant management practice affecting soil C storage in warm temperate climatic regions

    Carbon sequestration in the subsoil and the time required to stabilize carbon for climate change mitigation

    Get PDF
    Soils store large quantities of carbon in the subsoil (below 0.2 m depth) that is generally old and believed to be stabilized over centuries to millennia, which suggests that subsoil carbon sequestration (CS) can be used as a strategy for climate change mitigation. In this article, we review the main biophysical processes that contribute to carbon storage in subsoil and the main mathematical models used to represent these processes. Our guiding objective is to review whether a process understanding of soil carbon movement in the vertical profile can help us to assess carbon storage and persistence at timescales relevant for climate change mitigation. Bioturbation, liquid phase transport, belowground carbon inputs, mineral association, and microbial activity are the main processes contributing to the formation of soil carbon profiles, and these processes are represented in models using the diffusion-advection-reaction paradigm. Based on simulation examples and measurements from carbon and radiocarbon profiles across biomes, we found that advective and diffusive transport may only play a secondary role in the formation of soil carbon profiles. The difference between vertical root inputs and decomposition seems to play a primary role in determining the shape of carbon change with depth. Using the transit time of carbon to assess the timescales of carbon storage of new inputs, we show that only small quantities of new carbon inputs travel through the profile and can be stabilized for time horizons longer than 50 years, implying that activities that promote CS in the subsoil must take into consideration the very small quantities that can be stabilized in the long term.We reviewed mathematical models that represent soil carbon dynamics with depth and found thatmost models adopt the diffusion, advection, reaction (decomposition) paradigm. Transport processes play a secondary role in shaping soil carbon profiles, with the difference betweencarbon inputs and decomposition (g) playing a major role. Carbon stocks in the subsoil can be increased by decreasing the rate of change of soil carbon withdepth, increasing vertical transport (v) or decreasing g.imag

    Positive trends in organic carbon storage in Swedish agricultural soils due to unexpected socio-economic drivers

    Get PDF
    Soil organic carbon (SOC) plays a crucial role in the global carbon cycle as a potential sink or source. Land management influences SOC storage, so the European Parliament decided in 2013 that changes in carbon stocks within a certain land use type, including arable land, must be reported by all member countries in their national inventory reports for greenhouse gas emissions. Here we show the temporal dynamics of SOC during the past 2 decades in Swedish agricultural soils, based on soil inventories conducted in 19881997 (Inventory I), 2001-2007 (Inventory II) and from 2010 onwards (Inventory III), and link SOC changes with trends in agricultural management. From Inventory I to Inventory II, SOC increased in 16 out of 21 Swedish counties, while from Inventory I to Inventory III it increased in 18 out of 21 counties. Mean topsoil (0-20 cm) SOC concentration for the entire country increased from 2.48 to 2.67% C (a relative increase of 7.7 %, or 0.38% yr(-1)) over the whole period. We attributed this to a substantial increase in ley as a proportion of total agricultural area in all counties. The horse population in Sweden has more than doubled since 1981 and was identified as the main driver for this management change (R-2 = 0.72). Due to subsidies introduced in the early 1990s, the area of long-term set-aside (mostly old leys) also contributed to the increase in area of ley. The carbon sink function of Swedish agricultural soils demonstrated in this study differs from trends found in neighbouring countries. This indicates that country-specific or local socio-economic drivers for land management must be accounted for in larger-scale predictions
    corecore