35 research outputs found

    Metabolic Control Analysis in a Cellular Model of Elevated MAO-B: Relevance to Parkinson’s Disease

    Get PDF
    We previously demonstrated that spare respiratory capacity of the TCA cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH) was completely abolished upon increasing levels of MAO-B activity in a dopaminergic cell model system (Kumar et al., J Biol Chem 278:46432–46439, 2003). MAO-B mediated increases in H2O2 also appeared to result in direct oxidative inhibition of both mitochondrial complex I and aconitase. In order to elucidate the contribution that each of these components exerts over metabolic respiratory control as well as the impact of MAO-B elevation on their spare respiratory capacities, we performed metabolic respiratory control analysis. In addition to KGDH, we assessed the activities and substrate-mediated respiration of complex I, pyruvate dehydrogenase (PDH), succinate dehydrogenase (SDH), and mitochondrial aconitase in the absence and presence of complex-specific inhibitors in specific and mixed substrate conditions in mitochondria from our MAO-B elevated cells versus controls. Data from this study indicates that Complex I and KGDH are the most sensitive to inhibition by MAO-B mediated H2O2 generation, and could be instrumental in determining the fate of mitochondrial metabolism in this cellular PD model system

    Lack of Wdr13 Gene in Mice Leads to Enhanced Pancreatic Beta Cell Proliferation, Hyperinsulinemia and Mild Obesity

    Get PDF
    WD-repeat proteins are very diverse, yet these are structurally related proteins that participate in a wide range of cellular functions. WDR13, a member of this family, is conserved from fishes to humans and localizes into the nucleus. To understand the in vivo function(s) of Wdr13 gene, we have created and characterized a mutant mouse strain lacking this gene. The mutant mice had higher serum insulin levels and increased pancreatic islet mass as a result of enhanced beta cell proliferation. While a known cell cycle inhibitor, p21, was downregulated in the mutant islets, over expression of WDR13 in the pancreatic beta cell line (MIN6) resulted in upregulation of p21, accompanied by retardation of cell proliferation. We suggest that WDR13 is a novel negative regulator of the pancreatic beta cell proliferation. Given the higher insulin levels and better glucose clearance in Wdr13 gene deficient mice, we propose that this protein may be a potential candidate drug target for ameliorating impaired glucose metabolism in diabetes

    Complete Genomic Characterization of a Pathogenic A.II Strain of Francisella tularensis Subspecies tularensis

    Get PDF
    Francisella tularensis is the causative agent of tularemia, which is a highly lethal disease from nature and potentially from a biological weapon. This species contains four recognized subspecies including the North American endemic F. tularensis subsp. tularensis (type A), whose genetic diversity is correlated with its geographic distribution including a major population subdivision referred to as A.I and A.II. The biological significance of the A.I – A.II genetic differentiation is unknown, though there are suggestive ecological and epidemiological correlations. In order to understand the differentiation at the genomic level, we have determined the complete sequence of an A.II strain (WY96-3418) and compared it to the genome of Schu S4 from the A.I population. We find that this A.II genome is 1,898,476 bp in size with 1,820 genes, 1,303 of which code for proteins. While extensive genomic variation exists between “WY96” and Schu S4, there is only one whole gene difference. This one gene difference is a hypothetical protein of unknown function. In contrast, there are numerous SNPs (3,367), small indels (1,015), IS element differences (7) and large chromosomal rearrangements (31), including both inversions and translocations. The rearrangement borders are frequently associated with IS elements, which would facilitate intragenomic recombination events. The pathogenicity island duplicated regions (DR1 and DR2) are essentially identical in WY96 but vary relative to Schu S4 at 60 nucleotide positions. Other potential virulence-associated genes (231) varied at 559 nucleotide positions, including 357 non-synonymous changes. Molecular clock estimates for the divergence time between A.I and A.II genomes for different chromosomal regions ranged from 866 to 2131 years before present. This paper is the first complete genomic characterization of a member of the A.II clade of Francisella tularensis subsp. tularensis

    Niépce–Bell or Turing: how to test odour reproduction

    No full text

    PREDILECTION OF SITE IN CHRONIC RHINOSINUSITIS: TOMOGRAPHIC FINDINGS IN 100 PATIENTS

    No full text
    OBJECTIVE:To study the pattern of mucosal involvement in chronic rhinosinusitis usingcomputed tomography of 100 patients.DESIGN:A prospective study of mucosal involvement of paranasal sinus region was done on100 computed tomography scans of patients with chronic rhinosinusitis.RESULTS: The most common site of involvement was osteomeatal complex followed bymaxillary antrum. This was followed by anterior ethmoids, posterior ethmoida, frontal sinus andsphenoid sinus, in that order.CONCLUSION:Osteomeatal complex is the most common site to get involved in chronicrhinosinusitis. The blockade in the osteomeatal complex subsequently leads to impaired drainageand inflammation in maxillary, ethmoid and frontal sinuses. Removal of disease in Osteomeatalcomplex region is the basic principle of Functional Endoscopic Sinus Surgery which is bestappreciated on CT scan.
    corecore