12 research outputs found

    Controlled Co-Assembly of Nanoparticles and Polymer into Ultralong and Continuous One-Dimensional Nanochains

    No full text
    We report a robust one-dimensional (1D) nanoparticle-assembly strategy that uses the self-assembly of nanoparticles with ligand and thermal controls, polyethylene glycol (PEG) with thiol and carboxyl groups, and nanoparticle oligomer and polymer codewetting process to form ultralong and continuous 1D nanochains. The 1D nanochains were assembled with closely packed 1D nanoparticle oligomer building blocks, elongated and buttressed by dynamic 1D PEG templates formed on a hydrophobic surface via anisotropic spinodal dewetting. Using this strategy, nanoparticle-packed 1D nanochains (∼1 nm interparticle spacing) were fabricated with ∼60 nm-width and a few to >10 μm-length (nearly 20 μm in some cases) from 20 nm gold nanoparticles. Our findings offer insights and open revenues for particle assembly processes and, as given by ‘universality in colloid aggregation’, should be readily applicable to various nanoparticles

    Massively Parallel and Highly Quantitative Single-Particle Analysis on Interactions between Nanoparticles on Supported Lipid Bilayer

    No full text
    Observation of individual single-nanoparticle reactions provides direct information and insight for many complex chemical, physical, and biological processes, but this is utterly challenging with conventional high-resolution imaging techniques on conventional platforms. Here, we developed a photostable plasmonic nanoparticle-modified supported lipid bilayer (PNP-SLB) platform that allows for massively parallel in situ analysis of the interactions between nanoparticles with single-particle resolution on a two-dimensional (2D) fluidic surface. Each particle-by-particle PNP clustering process was monitored in real time and quantified via analysis of individual particle diffusion trajectories and single-particle-level plasmonic coupling. Importantly, the PNP-SLB-based nanoparticle cluster growth kinetics result was fitted well. As an application example, we performed a DNA detection assay, and the result suggests that our approach has very promising sensitivity and dynamic range (high attomolar to high femtomolar) without optimization, as well as remarkable single-base mismatch discrimination capability. The method shown herein can be readily applied for many different types of intermolecular and interparticle interactions and provide convenient tools and new insights for studying dynamic interactions on a highly controllable and analytical platform

    Glutathione Dimerization-Based Plasmonic Nanoswitch for Biodetection of Reactive Oxygen and Nitrogen Species

    No full text
    Reactive oxygen and nitrogen species (ROS and RNS) are continuously produced in the cellular systems and are controlled by several antioxidant mechanisms. Here, we developed a straightforward, sensitive, and quantitative assay for the colorimetric and spectroscopic detection of various ROS and RNS such as H<sub>2</sub>O<sub>2</sub>, ·OH, <sup>–</sup>OCl, NO<b>·</b>, and O<sub>2</sub><sup>–</sup> using glutathione-modified gold nanoparticles (GSH-AuNPs). A basic principle here is that the GSHs on the AuNP surface can be readily detached <i>via</i> the formation of glutathione disulfides upon the addition of ROS and RNS, and destabilized particles can aggregate to generate the plasmonic couplings between plasmonic AuNPs that trigger the red shift in UV–vis spectrum and solution color change. For nonradical species such as H<sub>2</sub>O<sub>2</sub>, this process can be more efficiently achieved by converting them into radical species <i>via</i> the Fenton reaction. Using this strategy, we were able to rapidly and quantitatively distinguish among cancerous and normal cells based on ROS and RNS production

    Plasmonic Nanosnowmen with a Conductive Junction as Highly Tunable Nanoantenna Structures and Sensitive, Quantitative and Multiplexable Surface-Enhanced Raman Scattering Probes

    No full text
    The precise design and synthesis of plasmonic nanostructures allow us to manipulate, enhance, and utilize the optical characteristics of metallic materials. Although many multimeric structures (e.g., dimers) with interparticle nanogap have been heavily studied, the plasmonic nanostructures with a conductive junction have not been well studied mostly because of the lack of the reliable synthetic methods that can reproducibly and precisely generate a large number of the plasmonic nanostructures with a controllable conductive nanojunction. Here, we formed various asymmetric Au–Ag head–body nanosnowman structures with a highly controllable conductive nanojunction and studied their plasmon modes that cover from visible to near-infrared range, electromagnetic field enhancement, and surface-enhanced Raman scattering (SERS) properties. It was shown that change in the plasmonic neck region between Au head and Ag body nanoparticles and symmetry breaking using different sizes and compositions within a structure can readily and controllably introduce various plasmon modes and change the electromagnetic field inside and around a nanosnowman structure. The charge-transfer and capacitive coupling plasmon modes at low frequencies are tunable in the snowman structure, and subtle change in the conductive junction area of the nanosnowman dramatically affects the resulting electromagnetic field and optical signal. The relationships between the electromagnetic field distribution and enhancement in the snowman structure, excitation laser wavelength, and Raman dye were also studied, and it was found that the strongest electromagnetic field was observed in the crevice area on the junction and synthesizing a thinner and sharper neck junction is critical to generate the stronger electromagnetic field in the crevice area and to obtain the charge-transfer mode-based near-infrared signal. We have further shown that highly reproducible SERS signals can be generated from these nanosnowman structures with a linear dependence on particle concentration (5 fM to 1 pM) and the SERS-enhancement factor values of >10<sup>8</sup> can be obtained with the aid of the resonance effect in SERS. Finally, a wide range of LSPR bands with high tunability along with high structural reproducibility and high synthetic yield make the nanosnowman structures as very good candidates for practically useful multiple-wavelength-compatible, quantitative and sensitive SERS probes, and highly tunable nanoantenna structures

    Single-Molecule and Single-Particle-Based Correlation Studies between Localized Surface Plasmons of Dimeric Nanostructures with ∼1 nm Gap and Surface-Enhanced Raman Scattering

    No full text
    Understanding the detailed electromagnetic field distribution inside a plasmonically coupled nanostructure, especially for structures with ∼1 nm plasmonic gap, is the fundamental basis for the control and use of the strong optical properties of plasmonic nanostructures. Using a multistep AFM tip-matching strategy that enables us to gain the optical spectra with the optimal signal-to-noise ratio as well as high reliability in correlation measurement between localized surface plasmon (LSP) and surface-enhanced Raman scattering (SERS), the coupled longitudinal dipolar and high-order multipolar LSPs were detected within a dimeric structure, where a single Raman dye is located via a single-DNA hybridization between two differently sized Au–Ag core–shell particles. On the basis of the characterization of each LSP component, the distinct phase differences, attributed to different quantities of the excited quadrupolar LSPs, between the transverse and longitudinal regimes were observed for the first time. By assessing the relative ratio of dipolar and quadrupolar LSPs, we found that these LSPs of the dimer with ∼1 nm gap were simultaneously excited, and large longitudinal bonding dipolar LSP/longitudinal bonding quadrupolar LSP value is required to generate high SERS signal intensity. Interestingly, a minor population of the examined dimers exhibited strong SERS intensities along not only the dimer axis but also the direction that arises from the interaction between the coupled transverse dipolar and longitudinal bonding quadrupolar LSPs. Overall, our high-precision correlation measurement strategy with a plasmonic heterodimer with ∼1 nm gap allows for the observation of the characteristic spectral features with the optimal signal-to-noise ratio and the subpopulation of plasmonic dimers with a distinct SERS behavior, hidden by a majority of dimer population, and the method and results can be useful in understanding the whole distribution of SERS enhancement factor values and designing plasmonic nanoantenna structures

    Highly Controlled Synthesis and Super-Radiant Photoluminescence of Plasmonic Cube-in-Cube Nanoparticles

    No full text
    The plasmonic properties of metal nanostructures have been heavily utilized for surface-enhanced Raman scattering (SERS) and metal-enhanced fluorescence (MEF), but the direct photoluminescence (PL) from plasmonic metal nanostructures, especially with plasmonic coupling, has not been widely used as much as SERS and MEF due to the lack of understanding of the PL mechanism, relatively weak signals, and the poor availability of the synthetic methods for the nanostructures with strong PL signals. The direct PL from metal nanostructures is beneficial if these issues can be addressed because it does not exhibit photoblinking or photobleaching, does not require dye-labeling, and can be employed as a highly reliable optical signal that directly depends on nanostructure morphology. Herein, we designed and synthesized plasmonic cube-in-cube (CiC) nanoparticles (NPs) with a controllable interior nanogap in a high yield from Au nanocubes (AuNCs). In synthesizing the CiC NPs, we developed a galvanic void formation (GVF) process, composed of replacement/reduction and void formation steps. We unraveled the super-radiant character of the plasmonic coupling-induced plasmon mode which can result in highly enhanced PL intensity and long-lasting PL, and the PL mechanisms of these structures were analyzed and matched with the plasmon hybridization model. Importantly, the PL intensity and quantum yield (QY) of CiC NPs are 31 times and 16 times higher than those of AuNCs, respectively, which have shown the highest PL intensity and QY reported for metallic nanostructures. Finally, we confirmed the long-term photostability of the PL signal, and the signal remained stable for at least 1 h under continuous illumination

    Oxidative Nanopeeling Chemistry-Based Synthesis and Photodynamic and Photothermal Therapeutic Applications of Plasmonic Core-Petal Nanostructures

    No full text
    The precise control of plasmonic nanostructures and their use for less invasive apoptotic pathway-based therapeutics are important but challenging. Here, we introduce a highly controlled synthetic strategy for plasmonic core-petal nanoparticles (CPNs) with massively branched and plasmonically coupled nanostructures. The formation of CPNs was facilitated by the gold chloride-induced oxidative disassembly and rupture of the polydopamine corona around Au nanoparticles and subsequent growth of Au nanopetals. We show that CPNs can act as multifunctional nanoprobes that induce dual photodynamic and photothermal therapeutic effects without a need for organic photosensitizers, coupled with the generation of reactive oxygen species (ROS), and allow for imaging and analyzing cells. Near-infrared laser-activated CPNs can optically monitor and efficiently kill cancer cells via apoptotic pathway by dual phototherapeutic effects and ROS-mediated oxidative intracellular damage with a relatively mild increase in temperature, low laser power, and short laser exposure time

    Transformative Heterointerface Evolution and Plasmonic Tuning of Anisotropic Trimetallic Nanoparticles

    No full text
    Multicomponent nanoparticles that incorporate multiple nanocrystal domains into a single particle represent an important class of material with highly tailorable structures and properties. The controlled synthesis of multicomponent NPs with 3 or more components in the desired structure, particularly anisotropic structure, and property is, however, challenging. Here, we developed a polymer and galvanic replacement reaction-based transformative heterointerface evolution (THE) method to form and tune gold–copper–silver multimetallic anisotropic nanoparticles (MAPs) with well-defined configurations, including structural order, particle and junction geometry, giving rise to extraordinarily high tunability in the structural design, synthesis and optical property of trimetallic plasmonic nanoantenna structures. MAPs can easily, flexibly integrate multiple surface plasmon resonance (SPR) peaks and incorporate various plasmonic field localization and enhancement within one structure. Importantly, a heteronanojunction in these MAPs can be finely controlled and hence tune the SPR properties of these structures, widely covering UV, visible and near-infrared range. The development of the THE method and new findings in synthesis and property tuning of multicomponent nanostructures pave ways to the fabrication of highly tailored multicomponent nanohybrids and realization of their applications in optics, energy, catalysis and biotechnology

    Thiolated DNA-Based Chemistry and Control in the Structure and Optical Properties of Plasmonic Nanoparticles with Ultrasmall Interior Nanogap

    No full text
    The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes

    Dealloyed Intra-Nanogap Particles with Highly Robust, Quantifiable Surface-Enhanced Raman Scattering Signals for Biosensing and Bioimaging Applications

    No full text
    Uniformly controlling a large number of metal nanostructures with a plasmonically enhanced signal to generate quantitative optical signals and the widespread use of these structures for surface-enhanced Raman scattering (SERS)-based biosensing and bioimaging applications are of paramount importance but are extremely challenging. Here, we report a highly controllable, facile selective-interdiffusive dealloying chemistry for synthesizing the dealloyed intra-nanogap particles (DIPs) with a ∼2 nm intragap in a high yield (∼95%) without the need for an interlayer. The SERS signals from DIPs are highly quantitative and polarization-independent with polarized laser sources. Remarkably, all the analyzed particles displayed the SERS enhancement factors (EFs) of ≥1.1 × 10<sup>8</sup> with a very narrow distribution of EFs. Finally, we show that DIPs can be used as ultrasensitive SERS-based DNA detection probes for detecting 10 aM to 1 pM target concentrations and highly robust, quantitative real-time cell imaging probes for long-term imaging with low laser power and short exposure time
    corecore